Degenerations of k-positive surface group representations

We introduce k\k\-positive representations, a large class of 1,…,k\łbrace 1,łdots ,k\rbrace\-Anosov surface group representations into PGL(E)\mathsf PGL(E)\ that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-d...

Full description

Saved in:
Bibliographic Details
Main Authors: Beyrer, Jonas (Author) , Pozzetti, Maria Beatrice (Author)
Format: Article (Journal)
Language:English
Published: September 2024
In: Journal of topology
Year: 2024, Volume: 17, Issue: 3, Pages: 1-46
ISSN:1753-8424
DOI:10.1112/topo.12352
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/topo.12352
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/topo.12352
Get full text
Author Notes:Jonas Beyrer, Beatrice Pozzetti
Description
Summary:We introduce k\k\-positive representations, a large class of 1,…,k\łbrace 1,łdots ,k\rbrace\-Anosov surface group representations into PGL(E)\mathsf PGL(E)\ that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least (k−3)\(k-3)\-positive and irreducible limits are (k−1)\(k-1)\-positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.
Item Description:Erstveröffentlichung: 3. August 2024
Gesehen am 28.04.2024
Physical Description:Online Resource
ISSN:1753-8424
DOI:10.1112/topo.12352