In-context learning enables multimodal large language models to classify cancer pathology images

Medical image classification requires labeled, task-specific datasets which are used to train deep learning networks de novo, or to fine-tune foundation models. However, this process is computationally and technically demanding. In language processing, in-context learning provides an alternative, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ferber, Dyke (VerfasserIn) , Wölflein, Georg (VerfasserIn) , Wiest, Isabella (VerfasserIn) , Ligero, Marta (VerfasserIn) , Sainath, Srividhya (VerfasserIn) , Ghaffari Laleh, Narmin (VerfasserIn) , El Nahhas, Omar S. M. (VerfasserIn) , Müller-Franzes, Gustav (VerfasserIn) , Jäger, Dirk (VerfasserIn) , Truhn, Daniel (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 November 2024
In: Nature Communications
Year: 2024, Jahrgang: 15, Pages: 1-12
ISSN:2041-1723
DOI:10.1038/s41467-024-51465-9
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41467-024-51465-9
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41467-024-51465-9
Volltext
Verfasserangaben:Dyke Ferber, Georg Wölflein, Isabella C. Wiest, Marta Ligero, Srividhya Sainath, Narmin Ghaffari Laleh, Omar S. M. El Nahhas, Gustav Müller-Franzes, Dirk Jäger, Daniel Truhn & Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1923737155
003 DE-627
005 20250717011813.0
007 cr uuu---uuuuu
008 250428s2024 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41467-024-51465-9  |2 doi 
035 |a (DE-627)1923737155 
035 |a (DE-599)KXP1923737155 
035 |a (OCoLC)1528045029 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Ferber, Dyke  |e VerfasserIn  |0 (DE-588)1171467079  |0 (DE-627)1040545629  |0 (DE-576)513746056  |4 aut 
245 1 0 |a In-context learning enables multimodal large language models to classify cancer pathology images  |c Dyke Ferber, Georg Wölflein, Isabella C. Wiest, Marta Ligero, Srividhya Sainath, Narmin Ghaffari Laleh, Omar S. M. El Nahhas, Gustav Müller-Franzes, Dirk Jäger, Daniel Truhn & Jakob Nikolas Kather 
264 1 |c 21 November 2024 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.04.2025 
520 |a Medical image classification requires labeled, task-specific datasets which are used to train deep learning networks de novo, or to fine-tune foundation models. However, this process is computationally and technically demanding. In language processing, in-context learning provides an alternative, where models learn from within prompts, bypassing the need for parameter updates. Yet, in-context learning remains underexplored in medical image analysis. Here, we systematically evaluate the model Generative Pretrained Transformer 4 with Vision capabilities (GPT-4V) on cancer image processing with in-context learning on three cancer histopathology tasks of high importance: Classification of tissue subtypes in colorectal cancer, colon polyp subtyping and breast tumor detection in lymph node sections. Our results show that in-context learning is sufficient to match or even outperform specialized neural networks trained for particular tasks, while only requiring a minimal number of samples. In summary, this study demonstrates that large vision language models trained on non-domain specific data can be applied out-of-the box to solve medical image-processing tasks in histopathology. This democratizes access of generalist AI models to medical experts without technical background especially for areas where annotated data is scarce. 
650 4 |a Cancer 
650 4 |a Computer science 
650 4 |a Diagnostic markers 
650 4 |a Machine learning 
650 4 |a Oncology 
700 1 |a Wölflein, Georg  |e VerfasserIn  |4 aut 
700 1 |a Wiest, Isabella  |d 1992-  |e VerfasserIn  |0 (DE-588)1198882956  |0 (DE-627)168103638X  |4 aut 
700 1 |a Ligero, Marta  |e VerfasserIn  |4 aut 
700 1 |a Sainath, Srividhya  |e VerfasserIn  |4 aut 
700 1 |a Ghaffari Laleh, Narmin  |e VerfasserIn  |4 aut 
700 1 |a El Nahhas, Omar S. M.  |e VerfasserIn  |4 aut 
700 1 |a Müller-Franzes, Gustav  |e VerfasserIn  |4 aut 
700 1 |a Jäger, Dirk  |d 1964-  |e VerfasserIn  |0 (DE-588)1032507535  |0 (DE-627)738505323  |0 (DE-576)380074125  |4 aut 
700 1 |8 1\p  |a Truhn, Daniel  |e VerfasserIn  |0 (DE-588)1047348306  |0 (DE-627)778145913  |0 (DE-576)400927314  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Nature Communications  |d [London] : Springer Nature, 2010  |g 15(2024), Artikel-ID 10104, Seite 1-12  |h Online-Ressource  |w (DE-627)626457688  |w (DE-600)2553671-0  |w (DE-576)331555905  |x 2041-1723  |7 nnas  |a In-context learning enables multimodal large language models to classify cancer pathology images 
773 1 8 |g volume:15  |g year:2024  |g elocationid:10104  |g pages:1-12  |g extent:12  |a In-context learning enables multimodal large language models to classify cancer pathology images 
856 4 0 |u https://doi.org/10.1038/s41467-024-51465-9  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41467-024-51465-9  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20250505  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20250428 
993 |a Article 
994 |a 2024 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 11  |y j 
998 |g 1032507535  |a Jäger, Dirk  |m 1032507535:Jäger, Dirk  |d 910000  |e 910000PJ1032507535  |k 0/910000/  |p 9 
998 |g 1198882956  |a Wiest, Isabella  |m 1198882956:Wiest, Isabella  |d 60000  |d 61100  |e 60000PW1198882956  |e 61100PW1198882956  |k 0/60000/  |k 1/60000/61100/  |p 3 
998 |g 1171467079  |a Ferber, Dyke  |m 1171467079:Ferber, Dyke  |d 910000  |d 910100  |e 910000PF1171467079  |e 910100PF1171467079  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1923737155  |e 4710850623 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Dyke Ferber, Georg Wölflein, Isabella C. Wiest, Marta Ligero, Srividhya Sainath, Narmin Ghaffari Laleh, Omar S. M. El Nahhas, Gustav Müller-Franzes, Dirk Jäger, Daniel Truhn & Jakob Nikolas Kather"]},"language":["eng"],"person":[{"display":"Ferber, Dyke","given":"Dyke","role":"aut","family":"Ferber"},{"given":"Georg","display":"Wölflein, Georg","role":"aut","family":"Wölflein"},{"given":"Isabella","display":"Wiest, Isabella","family":"Wiest","role":"aut"},{"display":"Ligero, Marta","given":"Marta","family":"Ligero","role":"aut"},{"family":"Sainath","role":"aut","display":"Sainath, Srividhya","given":"Srividhya"},{"display":"Ghaffari Laleh, Narmin","given":"Narmin","family":"Ghaffari Laleh","role":"aut"},{"role":"aut","family":"El Nahhas","given":"Omar S. M.","display":"El Nahhas, Omar S. M."},{"given":"Gustav","display":"Müller-Franzes, Gustav","family":"Müller-Franzes","role":"aut"},{"family":"Jäger","role":"aut","given":"Dirk","display":"Jäger, Dirk"},{"display":"Truhn, Daniel","given":"Daniel","family":"Truhn","role":"aut"},{"display":"Kather, Jakob Nikolas","given":"Jakob Nikolas","role":"aut","family":"Kather"}],"recId":"1923737155","note":["Gesehen am 28.04.2025"],"title":[{"title":"In-context learning enables multimodal large language models to classify cancer pathology images","title_sort":"In-context learning enables multimodal large language models to classify cancer pathology images"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"extent":"12 S.","noteIll":"Illustrationen"}],"id":{"doi":["10.1038/s41467-024-51465-9"],"eki":["1923737155"]},"relHost":[{"language":["eng"],"part":{"year":"2024","volume":"15","extent":"12","pages":"1-12","text":"15(2024), Artikel-ID 10104, Seite 1-12"},"pubHistory":["2010-"],"note":["Gesehen am 13.06.24"],"disp":"In-context learning enables multimodal large language models to classify cancer pathology imagesNature Communications","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"626457688","title":[{"title_sort":"Nature Communications","title":"Nature Communications"}],"id":{"eki":["626457688"],"issn":["2041-1723"],"zdb":["2553671-0"]},"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"[London] ; [London]","dateIssuedDisp":"[2010]-","publisher":"Springer Nature ; Nature Publishing Group UK"}]}],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"21 November 2024"}]} 
SRT |a FERBERDYKEINCONTEXTL2120