Application of a validated prostate MRI deep learning system to independent same-vendor multi-institutional data: demonstration of transferability
To evaluate a fully automatic deep learning system to detect and segment clinically significant prostate cancer (csPCa) on same-vendor prostate MRI from two different institutions not contributing to training of the system.
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
28 July 2023
|
| In: |
European radiology
Year: 2023, Volume: 33, Issue: 11, Pages: 7463-7476 |
| ISSN: | 1432-1084 |
| DOI: | 10.1007/s00330-023-09882-9 |
| Online Access: | Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s00330-023-09882-9 Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00330-023-09882-9 |
| Author Notes: | Nils Netzer, Carolin Eith, Oliver Bethge, Thomas Hielscher, Constantin Schwab, Albrecht Stenzinger, Regula Gnirs, Heinz-Peter Schlemmer, Klaus H. Maier-Hein, Lars Schimmöller, David Bonekamp |
| Summary: | To evaluate a fully automatic deep learning system to detect and segment clinically significant prostate cancer (csPCa) on same-vendor prostate MRI from two different institutions not contributing to training of the system. |
|---|---|
| Item Description: | Gesehen am 20.05.2025 |
| Physical Description: | Online Resource |
| ISSN: | 1432-1084 |
| DOI: | 10.1007/s00330-023-09882-9 |