Application of a validated prostate MRI deep learning system to independent same-vendor multi-institutional data: demonstration of transferability

To evaluate a fully automatic deep learning system to detect and segment clinically significant prostate cancer (csPCa) on same-vendor prostate MRI from two different institutions not contributing to training of the system.

Saved in:
Bibliographic Details
Main Authors: Netzer, Nils (Author) , Eith, Carolin (Author) , Bethge, Oliver (Author) , Hielscher, Thomas (Author) , Schwab, Constantin (Author) , Stenzinger, Albrecht (Author) , Gnirs, Regula (Author) , Schlemmer, Heinz-Peter (Author) , Maier-Hein, Klaus H. (Author) , Schimmöller, Lars (Author) , Bonekamp, David (Author)
Format: Article (Journal)
Language:English
Published: 28 July 2023
In: European radiology
Year: 2023, Volume: 33, Issue: 11, Pages: 7463-7476
ISSN:1432-1084
DOI:10.1007/s00330-023-09882-9
Online Access:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s00330-023-09882-9
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00330-023-09882-9
Get full text
Author Notes:Nils Netzer, Carolin Eith, Oliver Bethge, Thomas Hielscher, Constantin Schwab, Albrecht Stenzinger, Regula Gnirs, Heinz-Peter Schlemmer, Klaus H. Maier-Hein, Lars Schimmöller, David Bonekamp
Description
Summary:To evaluate a fully automatic deep learning system to detect and segment clinically significant prostate cancer (csPCa) on same-vendor prostate MRI from two different institutions not contributing to training of the system.
Item Description:Gesehen am 20.05.2025
Physical Description:Online Resource
ISSN:1432-1084
DOI:10.1007/s00330-023-09882-9