Martignac: computational workflows for reproducible, traceable, and composable coarse-grained Martini simulations

Despite their wide use and far-reaching implications, molecular dynamics (MD) simulations suffer from a lack of both traceability and reproducibility. We introduce Martignac: computational workflows for the coarse-grained (CG) Martini force field. Martignac describes Martini CG MD simulations as an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bereau, Tristan (VerfasserIn) , Walter, Luis J. (VerfasserIn) , Rudzinski, Joseph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2, 2024
In: Journal of chemical information and modeling
Year: 2024, Jahrgang: 64, Heft: 24, Pages: 9413-9423
ISSN:1549-960X
DOI:10.1021/acs.jcim.4c01754
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1021/acs.jcim.4c01754
Verlag, lizenzpflichtig, Volltext: https://pubs.acs.org/doi/10.1021/acs.jcim.4c01754
Volltext
Verfasserangaben:Tristan Bereau, Luis J. Walter, and Joseph F. Rudzinski
Beschreibung
Zusammenfassung:Despite their wide use and far-reaching implications, molecular dynamics (MD) simulations suffer from a lack of both traceability and reproducibility. We introduce Martignac: computational workflows for the coarse-grained (CG) Martini force field. Martignac describes Martini CG MD simulations as an acyclic directed graph, providing the entire history of a simulation─from system preparation to property calculations. Martignac connects to NOMAD, such that all simulation data generated are automatically normalized and stored according to the FAIR principles. We present several prototypical Martini workflows, including system generation of simple liquids and bilayers, as well as free-energy calculations for solute solvation in homogeneous liquids and drug permeation in lipid bilayers. By connecting to the NOMAD database to automatically pull existing simulations and push any new simulation generated, Martignac contributes to improving the sustainability and reproducibility of molecular simulations.
Beschreibung:Gesehen am 11.06.2025
Beschreibung:Online Resource
ISSN:1549-960X
DOI:10.1021/acs.jcim.4c01754