From whole-slide image to biomarker prediction: end-to-end weakly supervised deep learning in computational pathology

Hematoxylin- and eosin-stained whole-slide images (WSIs) are the foundation of diagnosis of cancer. In recent years, development of deep learning-based methods in computational pathology has enabled the prediction of biomarkers directly from WSIs. However, accurately linking tissue phenotype to biom...

Full description

Saved in:
Bibliographic Details
Main Authors: El Nahhas, Omar S. M. (Author) , Treeck, Marko van (Author) , Wölflein, Georg (Author) , Unger, Michaela (Author) , Försch, Sebastian (Author) , Lenz, Tim (Author) , Wagner, Sophia J. (Author) , Hewitt, Katherine J. (Author) , Khader, Firas (Author) , Truhn, Daniel (Author) , Kather, Jakob Nikolas (Author)
Format: Article (Journal)
Language:English
Published: January 2025
In: Nature protocols
Year: 2025, Volume: 20, Issue: 1, Pages: 293-316
ISSN:1750-2799
DOI:10.1038/s41596-024-01047-2
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41596-024-01047-2
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41596-024-01047-2
Get full text
Author Notes:Omar S.M. El Nahhas, Marko van Treeck, Georg Wölflein, Michaela Unger, Marta Ligero, Tim Lenz, Sophia J. Wagner, Katherine J. Hewitt, Firas Khader, Sebastian Foersch, Daniel Truhn & Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1928951813
003 DE-627
005 20251101234104.0
007 cr uuu---uuuuu
008 250624s2025 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41596-024-01047-2  |2 doi 
035 |a (DE-627)1928951813 
035 |a (DE-599)KXP1928951813 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a El Nahhas, Omar S. M.  |e VerfasserIn  |0 (DE-588)1341939367  |0 (DE-627)190253512X  |4 aut 
245 1 0 |a From whole-slide image to biomarker prediction  |b end-to-end weakly supervised deep learning in computational pathology  |c Omar S.M. El Nahhas, Marko van Treeck, Georg Wölflein, Michaela Unger, Marta Ligero, Tim Lenz, Sophia J. Wagner, Katherine J. Hewitt, Firas Khader, Sebastian Foersch, Daniel Truhn & Jakob Nikolas Kather 
264 1 |c January 2025 
300 |b Illustrationen 
300 |a 24 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 16. September 2024 
500 |a Gesehen am 24.06.2025 
520 |a Hematoxylin- and eosin-stained whole-slide images (WSIs) are the foundation of diagnosis of cancer. In recent years, development of deep learning-based methods in computational pathology has enabled the prediction of biomarkers directly from WSIs. However, accurately linking tissue phenotype to biomarkers at scale remains a crucial challenge for democratizing complex biomarkers in precision oncology. This protocol describes a practical workflow for solid tumor associative modeling in pathology (STAMP), enabling prediction of biomarkers directly from WSIs by using deep learning. The STAMP workflow is biomarker agnostic and allows for genetic and clinicopathologic tabular data to be included as an additional input, together with histopathology images. The protocol consists of five main stages that have been successfully applied to various research problems: formal problem definition, data preprocessing, modeling, evaluation and clinical translation. The STAMP workflow differentiates itself through its focus on serving as a collaborative framework that can be used by clinicians and engineers alike for setting up research projects in the field of computational pathology. As an example task, we applied STAMP to the prediction of microsatellite instability (MSI) status in colorectal cancer, showing accurate performance for the identification of tumors high in MSI. Moreover, we provide an open-source code base, which has been deployed at several hospitals across the globe to set up computational pathology workflows. The STAMP workflow requires one workday of hands-on computational execution and basic command line knowledge. 
650 4 |a Bioinformatics 
650 4 |a Cancer imaging 
650 4 |a Image processing 
700 1 |a Treeck, Marko van  |e VerfasserIn  |4 aut 
700 1 |a Wölflein, Georg  |e VerfasserIn  |4 aut 
700 1 |a Unger, Michaela  |e VerfasserIn  |0 (DE-588)1333472730  |0 (DE-627)189155073X  |4 aut 
700 1 |a Försch, Sebastian  |d 1985-  |e VerfasserIn  |0 (DE-588)1018553894  |0 (DE-627)682860832  |0 (DE-576)356024814  |4 aut 
700 1 |a Lenz, Tim  |e VerfasserIn  |4 aut 
700 1 |a Wagner, Sophia J.  |e VerfasserIn  |4 aut 
700 1 |a Hewitt, Katherine J.  |e VerfasserIn  |0 (DE-588)136400335X  |0 (DE-627)1923693859  |4 aut 
700 1 |a Khader, Firas  |d 1996-  |e VerfasserIn  |0 (DE-588)1298294681  |0 (DE-627)1854342223  |4 aut 
700 1 |a Truhn, Daniel  |e VerfasserIn  |0 (DE-588)1047348306  |0 (DE-627)778145913  |0 (DE-576)400927314  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Nature protocols  |d Basingstoke : Nature Publishing Group, 2006  |g 20(2025), 1 vom: Jan., Seite 293-316  |h Online-Ressource  |w (DE-627)515980552  |w (DE-600)2244966-8  |w (DE-576)276000455  |x 1750-2799  |7 nnas  |a From whole-slide image to biomarker prediction end-to-end weakly supervised deep learning in computational pathology 
773 1 8 |g volume:20  |g year:2025  |g number:1  |g month:01  |g pages:293-316  |g extent:24  |a From whole-slide image to biomarker prediction end-to-end weakly supervised deep learning in computational pathology 
856 4 0 |u https://doi.org/10.1038/s41596-024-01047-2  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41596-024-01047-2  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250624 
993 |a Article 
994 |a 2025 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 12  |y j 
999 |a KXP-PPN1928951813  |e 4737964778 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Veröffentlicht: 16. September 2024","Gesehen am 24.06.2025"],"recId":"1928951813","id":{"doi":["10.1038/s41596-024-01047-2"],"eki":["1928951813"]},"title":[{"subtitle":"end-to-end weakly supervised deep learning in computational pathology","title":"From whole-slide image to biomarker prediction","title_sort":"From whole-slide image to biomarker prediction"}],"relHost":[{"recId":"515980552","titleAlt":[{"title":"Protocols"}],"pubHistory":["1.2006 -"],"id":{"zdb":["2244966-8"],"eki":["515980552"],"issn":["1750-2799"]},"title":[{"title_sort":"Nature protocols","title":"Nature protocols"}],"disp":"From whole-slide image to biomarker prediction end-to-end weakly supervised deep learning in computational pathologyNature protocols","note":["Gesehen am 18. September 2018"],"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"2006-","publisherPlace":"Basingstoke","dateIssuedKey":"2006","publisher":"Nature Publishing Group"}],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"pages":"293-316","extent":"24","year":"2025","volume":"20","issue":"1","text":"20(2025), 1 vom: Jan., Seite 293-316"}}],"person":[{"family":"El Nahhas","roleDisplay":"VerfasserIn","given":"Omar S. M.","role":"aut","display":"El Nahhas, Omar S. M."},{"given":"Marko van","role":"aut","display":"Treeck, Marko van","roleDisplay":"VerfasserIn","family":"Treeck"},{"family":"Wölflein","roleDisplay":"VerfasserIn","given":"Georg","role":"aut","display":"Wölflein, Georg"},{"roleDisplay":"VerfasserIn","family":"Unger","given":"Michaela","display":"Unger, Michaela","role":"aut"},{"display":"Försch, Sebastian","role":"aut","given":"Sebastian","roleDisplay":"VerfasserIn","family":"Försch"},{"roleDisplay":"VerfasserIn","family":"Lenz","role":"aut","display":"Lenz, Tim","given":"Tim"},{"given":"Sophia J.","display":"Wagner, Sophia J.","role":"aut","family":"Wagner","roleDisplay":"VerfasserIn"},{"given":"Katherine J.","display":"Hewitt, Katherine J.","role":"aut","roleDisplay":"VerfasserIn","family":"Hewitt"},{"role":"aut","display":"Khader, Firas","given":"Firas","family":"Khader","roleDisplay":"VerfasserIn"},{"given":"Daniel","role":"aut","display":"Truhn, Daniel","roleDisplay":"VerfasserIn","family":"Truhn"},{"roleDisplay":"VerfasserIn","family":"Kather","given":"Jakob Nikolas","display":"Kather, Jakob Nikolas","role":"aut"}],"physDesc":[{"extent":"24 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Omar S.M. El Nahhas, Marko van Treeck, Georg Wölflein, Michaela Unger, Marta Ligero, Tim Lenz, Sophia J. Wagner, Katherine J. Hewitt, Firas Khader, Sebastian Foersch, Daniel Truhn & Jakob Nikolas Kather"]},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"January 2025"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"]} 
SRT |a ELNAHHASOMFROMWHOLES2025