Semi-visible jets, energy-based models, and self-supervision

We present DarkCLR, a novel framework for detecting semi-visible jets at the LHC. DarkCLR uses a self-supervised contrastive-learning approach to create observables that are approximately invariant under relevant transformations. We use background-enhanced data to create a sensitive representation a...

Full description

Saved in:
Bibliographic Details
Main Authors: Favaro, Luigi (Author) , Krämer, Michael (Author) , Modak, Tanmoy (Author) , Plehn, Tilman (Author) , Rüschkamp, Jan (Author)
Format: Article (Journal)
Language:English
Published: 3 February 2025
In: SciPost physics
Year: 2025, Volume: 18, Issue: 2, Pages: 1-17
ISSN:2542-4653
DOI:10.21468/SciPostPhys.18.2.042
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.18.2.042
Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.18.2.042
Get full text
Author Notes:Luigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn and Jan Rüschkamp
Description
Summary:We present DarkCLR, a novel framework for detecting semi-visible jets at the LHC. DarkCLR uses a self-supervised contrastive-learning approach to create observables that are approximately invariant under relevant transformations. We use background-enhanced data to create a sensitive representation and evaluate the representations using a CLR-inspired anomaly score and a normalized autoencoder as density estimators. Our results show a remarkable sensitivity for a wide range of semi-visible jets and are more robust than a supervised classifier trained on a specific signal.
Item Description:Gesehen am 25.07.2025
Physical Description:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.18.2.042