Semi-visible jets, energy-based models, and self-supervision

We present DarkCLR, a novel framework for detecting semi-visible jets at the LHC. DarkCLR uses a self-supervised contrastive-learning approach to create observables that are approximately invariant under relevant transformations. We use background-enhanced data to create a sensitive representation a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Favaro, Luigi (VerfasserIn) , Krämer, Michael (VerfasserIn) , Modak, Tanmoy (VerfasserIn) , Plehn, Tilman (VerfasserIn) , Rüschkamp, Jan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 3 February 2025
In: SciPost physics
Year: 2025, Jahrgang: 18, Heft: 2, Pages: 1-17
ISSN:2542-4653
DOI:10.21468/SciPostPhys.18.2.042
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.18.2.042
Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.18.2.042
Volltext
Verfasserangaben:Luigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn and Jan Rüschkamp
Beschreibung
Zusammenfassung:We present DarkCLR, a novel framework for detecting semi-visible jets at the LHC. DarkCLR uses a self-supervised contrastive-learning approach to create observables that are approximately invariant under relevant transformations. We use background-enhanced data to create a sensitive representation and evaluate the representations using a CLR-inspired anomaly score and a normalized autoencoder as density estimators. Our results show a remarkable sensitivity for a wide range of semi-visible jets and are more robust than a supervised classifier trained on a specific signal.
Beschreibung:Gesehen am 25.07.2025
Beschreibung:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.18.2.042