How do deep-learning models generalize across populations?: cross-ethnicity generalization of COPD detection
To evaluate the performance and potential biases of deep-learning models in detecting chronic obstructive pulmonary disease (COPD) on chest CT scans across different ethnic groups, specifically non-Hispanic White (NHW) and African American (AA) populations.
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
07 August 2024
|
| In: |
Insights into imaging
Year: 2024, Volume: 15, Pages: 1-12 |
| ISSN: | 1869-4101 |
| DOI: | 10.1186/s13244-024-01781-x |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s13244-024-01781-x |
| Author Notes: | Silvia D. Almeida, Tobias Norajitra, Carsten T. Lüth, Tassilo Wald, Vivienn Weru, Marco Nolden, Paul F. Jäger, Oyunbileg von Stackelberg, Claus Peter Heußel, Oliver Weinheimer, Jürgen Biederer, Hans-Ulrich Kauczor and Klaus Maier-Hein |
| Summary: | To evaluate the performance and potential biases of deep-learning models in detecting chronic obstructive pulmonary disease (COPD) on chest CT scans across different ethnic groups, specifically non-Hispanic White (NHW) and African American (AA) populations. |
|---|---|
| Item Description: | Gesehen am 28.07.2025 |
| Physical Description: | Online Resource |
| ISSN: | 1869-4101 |
| DOI: | 10.1186/s13244-024-01781-x |