How do deep-learning models generalize across populations?: cross-ethnicity generalization of COPD detection

To evaluate the performance and potential biases of deep-learning models in detecting chronic obstructive pulmonary disease (COPD) on chest CT scans across different ethnic groups, specifically non-Hispanic White (NHW) and African American (AA) populations.

Saved in:
Bibliographic Details
Main Authors: Almeida, Silvia D. (Author) , Norajitra, Tobias (Author) , Lüth, Carsten T. (Author) , Wald, Tassilo (Author) , Weru, Vivienn (Author) , Nolden, Marco (Author) , Jaeger, Paul F. (Author) , Stackelberg, Oyunbileg von (Author) , Heußel, Claus Peter (Author) , Weinheimer, Oliver (Author) , Biederer, Jürgen (Author) , Kauczor, Hans-Ulrich (Author) , Maier-Hein, Klaus H. (Author)
Format: Article (Journal)
Language:English
Published: 07 August 2024
In: Insights into imaging
Year: 2024, Volume: 15, Pages: 1-12
ISSN:1869-4101
DOI:10.1186/s13244-024-01781-x
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s13244-024-01781-x
Get full text
Author Notes:Silvia D. Almeida, Tobias Norajitra, Carsten T. Lüth, Tassilo Wald, Vivienn Weru, Marco Nolden, Paul F. Jäger, Oyunbileg von Stackelberg, Claus Peter Heußel, Oliver Weinheimer, Jürgen Biederer, Hans-Ulrich Kauczor and Klaus Maier-Hein
Description
Summary:To evaluate the performance and potential biases of deep-learning models in detecting chronic obstructive pulmonary disease (COPD) on chest CT scans across different ethnic groups, specifically non-Hispanic White (NHW) and African American (AA) populations.
Item Description:Gesehen am 28.07.2025
Physical Description:Online Resource
ISSN:1869-4101
DOI:10.1186/s13244-024-01781-x