How do deep-learning models generalize across populations?: cross-ethnicity generalization of COPD detection
To evaluate the performance and potential biases of deep-learning models in detecting chronic obstructive pulmonary disease (COPD) on chest CT scans across different ethnic groups, specifically non-Hispanic White (NHW) and African American (AA) populations.
Gespeichert in:
| Hauptverfasser: | , , , , , , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
07 August 2024
|
| In: |
Insights into imaging
Year: 2024, Jahrgang: 15, Pages: 1-12 |
| ISSN: | 1869-4101 |
| DOI: | 10.1186/s13244-024-01781-x |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s13244-024-01781-x |
| Verfasserangaben: | Silvia D. Almeida, Tobias Norajitra, Carsten T. Lüth, Tassilo Wald, Vivienn Weru, Marco Nolden, Paul F. Jäger, Oyunbileg von Stackelberg, Claus Peter Heußel, Oliver Weinheimer, Jürgen Biederer, Hans-Ulrich Kauczor and Klaus Maier-Hein |
| Zusammenfassung: | To evaluate the performance and potential biases of deep-learning models in detecting chronic obstructive pulmonary disease (COPD) on chest CT scans across different ethnic groups, specifically non-Hispanic White (NHW) and African American (AA) populations. |
|---|---|
| Beschreibung: | Gesehen am 28.07.2025 |
| Beschreibung: | Online Resource |
| ISSN: | 1869-4101 |
| DOI: | 10.1186/s13244-024-01781-x |