Multimodal Purcell enhancement and optical coherence of Eu3+ ions in a single nanoparticle coupled to a microcavity

Europium-doped nanocrystals constitute a promising material for a scalable future quantum computing platform. Long-lived nuclear spin states could serve as qubits addressed via coherent optical transitions. In order to realize an efficient spin-photon interface, we couple the emission from a single...

Full description

Saved in:
Bibliographic Details
Main Authors: Eichhorn, Timon (Author) , Jobbitt, Nicholas (Author) , Bieling, Sören (Author) , Liu, Shuping (Author) , Krom, Tobias (Author) , Serrano, Diana (Author) , Huber, Robert (Author) , Lemmer, Ulrich (Author) , Riedmatten, Hugues de (Author) , Goldner, Philippe (Author) , Hunger, David (Author)
Format: Article (Journal)
Language:English
Published: 13. Februar 2025
In: Nanophotonics
Year: 2025, Volume: 14, Issue: 11, Pages: 1817-1826
ISSN:2192-8614
DOI:10.1515/nanoph-2024-0721
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1515/nanoph-2024-0721
Verlag, kostenfrei, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/nanoph-2024-0721/html
Get full text
Author Notes:Timon Eichhorn, Nicholas Jobbitt, Sören Bieling, Shuping Liu, Tobias Krom, Diana Serrano, Robert Huber, Ulrich Lemmer, Hugues de Riedmatten, Philippe Goldner and David Hunger
Description
Summary:Europium-doped nanocrystals constitute a promising material for a scalable future quantum computing platform. Long-lived nuclear spin states could serve as qubits addressed via coherent optical transitions. In order to realize an efficient spin-photon interface, we couple the emission from a single nanoparticle to a fiber-based microcavity under cryogenic conditions. The spatial and spectral tunability of the cavity permits us to place individual nanoparticles in the cavity, to measure the inhomogeneous linewidth of the ions, and to show a multi-modal Purcell-enhancement of two transition in Eu 3+ . A halving of the free-space lifetime to 1.0ms is observed, corresponding to a 140-fold enhancement of the respective transition. Furthermore, we observe a narrow optical linewidth of 3.3MHz for a few-ion ensemble in the center of the inhomogeneous line. The results represent an important step towards the efficient readout of single Eu 3+ ions, a key requirement for the realization of single-ion-level quantum processing nodes in the solid state.
Item Description:Online veröffentlicht: 13. Februar 2025
Gesehen am 01.08.2025
Im Titel ist der Ausdruck "3+" hochgestellt
Physical Description:Online Resource
ISSN:2192-8614
DOI:10.1515/nanoph-2024-0721