Continuous learning AI in radiology: implementation principles and early applications
Continuous learning artificial intelligence algorithms learn and retrain continually, making them less prone to error and bias.
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
October 2020
|
| In: |
Radiology
Year: 2020, Volume: 297, Issue: 1, Pages: 6-14 |
| ISSN: | 1527-1315 |
| DOI: | 10.1148/radiol.2020200038 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1148/radiol.2020200038 Verlag, lizenzpflichtig, Volltext: https://pubs.rsna.org/doi/10.1148/radiol.2020200038 |
| Author Notes: | Oleg S. Pianykh, Georg Langs, Marc Dewey, Dieter R. Enzmann, Christian J. Herold, Stefan O. Schoenberg, James A. Brink |
| Summary: | Continuous learning artificial intelligence algorithms learn and retrain continually, making them less prone to error and bias. |
|---|---|
| Item Description: | Online publiziert: 25. August 2020 Gesehen am 06.08.2025 |
| Physical Description: | Online Resource |
| ISSN: | 1527-1315 |
| DOI: | 10.1148/radiol.2020200038 |