General design flow for waveguide Bragg gratings

Bragg gratings are crucial components in passive photonic signal processing, with wide-ranging applications including biosensing, pulse compression, photonic computing, and addressing. However, the design of integrated waveguide Bragg gratings (WBGs) for arbitrary wavelengths presents significant ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brückerhoff-Plückelmann, Frank (VerfasserIn) , Buskasper, Tim (VerfasserIn) , Römer, Julius (VerfasserIn) , Krämer, Linus (VerfasserIn) , Malik, Bilal (VerfasserIn) , McRae, Liam (VerfasserIn) , Kürpick, Linus (VerfasserIn) , Palitza, Simon (VerfasserIn) , Schuck, Carsten (VerfasserIn) , Pernice, Wolfram (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 28, 2025
In: Nanophotonics
Year: 2025, Jahrgang: 14, Heft: 3, Pages: 297-304
ISSN:2192-8614
DOI:10.1515/nanoph-2024-0498
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1515/nanoph-2024-0498
Verlag, kostenfrei, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/nanoph-2024-0498/html
Volltext
Verfasserangaben:Frank Brückerhoff-Plückelmann, Tim Buskasper, Julius Römer, Linus Krämer, Bilal Malik, Liam McRae, Linus Kürpick, Simon Palitza, Carsten Schuck, and Wolfram Pernice
Beschreibung
Zusammenfassung:Bragg gratings are crucial components in passive photonic signal processing, with wide-ranging applications including biosensing, pulse compression, photonic computing, and addressing. However, the design of integrated waveguide Bragg gratings (WBGs) for arbitrary wavelengths presents significant challenges, especially when dealing with highly asymmetric layer stacks and large refractive index contrasts. Convenient approximations used for fiber Bragg gratings generally break down in these cases, resulting in nontrivial design challenges. In this work, we introduce a general simulation and design framework for WBGs, which combines coupled mode theory with three-dimensional finite-element method eigenfrequency computations. This approach allows for precise design and optimization of WBGs across a broad range of device layer stacks. The design flow is applicable to further layer stacks across nearly all wavelengths of interest, given that the coupling between the forward and backward propagating mode is dominant.
Beschreibung:Gesehen am 25.08.2025
Beschreibung:Online Resource
ISSN:2192-8614
DOI:10.1515/nanoph-2024-0498