The relevance of non-axiality and low-lying excited states for slow magnetic relaxation in pentagonal-bipyramidal erbium(III) complexes probed by high-frequency EPR

High-frequency/high-field electron paramagnetic resonance studies on a series of seven-coordinate pentagonal-bipyramidal (PBP) erbium(III) complexes Er(DAPMBH/H2DAPS)X (H2DAPMBH = 2,6-diacetylpyridine bis-4-methoxy benzoylhydrazone, H4DAPS = 2,6-diacetylpyridine bis-(salicylhydrazone)) demonstrate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arneth, Jan Victor (VerfasserIn) , Spillecke, Lena (VerfasserIn) , Koo, Changhyun (VerfasserIn) , Bazhenova, Tamara A. (VerfasserIn) , Yagubskii, Eduard B. (VerfasserIn) , Klingeler, Rüdiger (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 April 2025
In: Chemistry - a European journal
Year: 2025, Jahrgang: 31, Heft: 33, Pages: 1-8
ISSN:1521-3765
DOI:10.1002/chem.202500369
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/chem.202500369
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.202500369
Volltext
Verfasserangaben:Jan Arneth, Lena Spillecke, Changyun Koo, Tamara A. Bazhenova, Eduard B. Yagubskii, and Rüdiger Klingeler
Beschreibung
Zusammenfassung:High-frequency/high-field electron paramagnetic resonance studies on a series of seven-coordinate pentagonal-bipyramidal (PBP) erbium(III) complexes Er(DAPMBH/H2DAPS)X (H2DAPMBH = 2,6-diacetylpyridine bis-4-methoxy benzoylhydrazone, H4DAPS = 2,6-diacetylpyridine bis-(salicylhydrazone)) demonstrate the effects of different apical ligands (X = (H2O)Cl (1), (CH3OH)N3 (2), Cl2 (3)) on the local magnetic anisotropy of the central ErIII ions. In particular, we report direct experimental determination of the effective g-values and zero field splittings of the energetically low-lying Kramers doublets. Our quantitative determination of the magnetic anisotropy highlights the relevance of an axial g-tensor for SMM behavior and suggests that fast magnetic relaxation is mainly driven by a thermally assisted quantum tunnelling process via low-lying excited states.
Beschreibung:Gesehen am 01.09.2025
Beschreibung:Online Resource
ISSN:1521-3765
DOI:10.1002/chem.202500369