Direct neutrino-mass measurement based on 259 days of KATRIN data
That neutrinos carry a nonvanishing rest mass is evidence of physics beyond the Standard Model of elementary particles. Their absolute mass holds relevance in fields from particle physics to cosmology. We report on the search for the effective electron antineutrino mass with the KATRIN experiment. K...
Saved in:
| Main Authors: | , |
|---|---|
| Corporate Author: | |
| Format: | Article (Journal) |
| Language: | English |
| Published: |
11 April 2025
|
| In: |
Science
Year: 2025, Volume: 388, Issue: 6743, Pages: 180-185 |
| ISSN: | 1095-9203 |
| DOI: | 10.1126/science.adq9592 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1126/science.adq9592 Verlag, lizenzpflichtig, Volltext: https://www.science.org/doi/10.1126/science.adq9592 |
| Author Notes: | KATRIN COLLABORATION* |
| Summary: | That neutrinos carry a nonvanishing rest mass is evidence of physics beyond the Standard Model of elementary particles. Their absolute mass holds relevance in fields from particle physics to cosmology. We report on the search for the effective electron antineutrino mass with the KATRIN experiment. KATRIN performs precision spectroscopy of the tritium β-decay close to the kinematic endpoint. On the basis of the first five measurement campaigns, we derived a best-fit value of - mν2=−0.14−0.15+0.13 - eV2, resulting in an upper limit of mν < 0.45 eV at 90% confidence level. Stemming from 36 million electrons collected in 259 measurement days, a substantial reduction of the background level, and improved systematic uncertainties, this result tightens KATRIN’s previous bound by a factor of almost two. |
|---|---|
| Item Description: | Veröffentlicht: 10. April 2025 *KATRIN Collaboration: Max Aker, Felix Spanier [und 147 weitere Personen] Gesehen am 25.09.2025 |
| Physical Description: | Online Resource |
| ISSN: | 1095-9203 |
| DOI: | 10.1126/science.adq9592 |