mTORC1 cooperates with tRNA wobble modification to sustain the protein synthesis machinery

Abstract - - Synthesizing the cellular proteome is a demanding process that is regulated by numerous signaling pathways and RNA modifications. How precisely these mechanisms control the protein synthesis machinery to generate specific proteome subsets remains unclear. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hermann, Julia (VerfasserIn) , Bortecen, Toman (VerfasserIn) , Kalis, Robert (VerfasserIn) , Kowar, Alexander (VerfasserIn) , Pechincha, Catarina (VerfasserIn) , Vogt, Vivien (VerfasserIn) , Schneider, Martin (VerfasserIn) , Helm, Dominic (VerfasserIn) , Krijgsveld, Jeroen (VerfasserIn) , Loayza-Puch, Fabricio (VerfasserIn) , Zuber, Johannes Ekkehart (VerfasserIn) , Palm, Wilhelm (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 06 May 2025
In: Nature Communications
Year: 2025, Jahrgang: 16, Pages: 1-19
ISSN:2041-1723
DOI:10.1038/s41467-025-59185-4
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41467-025-59185-4
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41467-025-59185-4
Volltext
Verfasserangaben:Julia Hermann, Toman Borteçen, Robert Kalis, Alexander Kowar, Catarina Pechincha, Vivien Vogt, Martin Schneider, Dominic Helm, Jeroen Krijgsveld, Fabricio Loayza-Puch, Johannes Zuber & Wilhelm Palm
Beschreibung
Zusammenfassung:Abstract - - Synthesizing the cellular proteome is a demanding process that is regulated by numerous signaling pathways and RNA modifications. How precisely these mechanisms control the protein synthesis machinery to generate specific proteome subsets remains unclear. Here, through genome-wide CRISPR screens we identify genes that enable mammalian cells to adapt to inactivation of the kinase mechanistic target of rapamycin complex 1 (mTORC1), the central driver of protein synthesis. When mTORC1 is inactive, enzymes that modify tRNAs at wobble uridines (U - 34 - -enzymes), Elongator and Ctu1/2, become critically essential for cell growth in vitro and in tumors. By integrating quantitative nascent proteomics, steady-state proteomics and ribosome profiling, we demonstrate that the loss of U - 34 - -enzymes particularly impairs the synthesis of ribosomal proteins. However, when mTORC1 is active, this biosynthetic defect only mildly affects steady-state protein abundance. By contrast, simultaneous suppression of mTORC1 and U - 34 - -enzymes depletes cells of ribosomal proteins, globally inhibiting translation. Thus, mTORC1 cooperates with tRNA U - 34 - -enzymes to sustain the protein synthesis machinery and support the high translational requirements of cell growth.
Beschreibung:Gesehen am 06.10.2025
Beschreibung:Online Resource
ISSN:2041-1723
DOI:10.1038/s41467-025-59185-4