Efficacy and safety assessment of homotopical transplantation of iPSCs-derived midbrain organoids into the substantia nigra of Parkinsonian rats

Current ectopic implantation has shown limited efficacy in promoting reinnervation of the nigrostriatal pathway, which is critically affected in Parkinson's disease (PD). Homotopic transplantation, on the other hand, may facilitate physiological cell rewiring of the basal ganglia, potentially i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zheng, Xin (VerfasserIn) , Chen, Jianwei (VerfasserIn) , Huang, Zhengzheng (VerfasserIn) , Zhang, Youcheng (VerfasserIn) , Zhou, Liping (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: September 2025
In: Bioengineering & translational medicine
Year: 2025, Jahrgang: 10, Heft: 5, Pages: 1-13
ISSN:2380-6761
DOI:10.1002/btm2.70014
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/btm2.70014
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/btm2.70014
Volltext
Verfasserangaben:Xin Zheng, Jianwei Chen, Zhengzheng Huang, Youcheng Zhang, Liping Zhou
Beschreibung
Zusammenfassung:Current ectopic implantation has shown limited efficacy in promoting reinnervation of the nigrostriatal pathway, which is critically affected in Parkinson's disease (PD). Homotopic transplantation, on the other hand, may facilitate physiological cell rewiring of the basal ganglia, potentially improving PD symptoms. This study aimed to evaluate the efficacy and safety of homotopically engrafting human induced pluripotent stem cells (hiPSCs)-derived midbrain organoids into the substantia nigra of PD rats. A rat model of PD was induced using 6-hydroxydopamine (6-OHDA) and homotopically transplanted into the lesioned SN with hiPSC-derived hMOs. The engrafted hMOs survived and continually mature in host brains, and were mainly differentiated into dopaminergic lineage neurons, part of which presented TH+ fibers. Behavioral evaluation demonstrated that transplantation of hMOs gradually reverse the motor disorder caused by 6-OHDA lesioning by 22% at week 5 and 35% by week 10 post-transplantation, respectively. No tumor formation or migration was detected in either subcutaneous space or vital organs following 10 weeks implantation. These findings support the efficacy and safety of homotopical hMOs transplantation, offering a promising cell-based strategy for treating Parkinson's disease.
Beschreibung:Online veröffentlicht: 27. März 2025
Gesehen am 15.10.2025
Beschreibung:Online Resource
ISSN:2380-6761
DOI:10.1002/btm2.70014