Automated ensemble multimodal machine learning for healthcare

The application of machine learning in medicine and healthcare has led to the creation of numerous diagnostic and prognostic models. However, despite their success, current approaches generally issue predictions using data from a single modality. This stands in stark contrast with clinician decision...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Imrie, Fergus (VerfasserIn) , Denner, Stefan (VerfasserIn) , Brunschwig, Lucas S. (VerfasserIn) , Maier-Hein, Klaus H. (VerfasserIn) , van der Schaar, Mihaela (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 2025
In: IEEE journal of biomedical and health informatics
Year: 2025, Jahrgang: 29, Heft: 6, Pages: 4213-4226
ISSN:2168-2208
DOI:10.1109/JBHI.2025.3530156
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/JBHI.2025.3530156
Verlag, lizenzpflichtig, Volltext: https://ieeexplore.ieee.org/document/10842455/authors
Volltext
Verfasserangaben:Fergus Imrie, Stefan Denner, Lucas S. Brunschwig, Klaus Maier-Hein, Mihaela van der Schaar
Beschreibung
Zusammenfassung:The application of machine learning in medicine and healthcare has led to the creation of numerous diagnostic and prognostic models. However, despite their success, current approaches generally issue predictions using data from a single modality. This stands in stark contrast with clinician decision-making which employs diverse information from multiple sources. While several multimodal machine learning approaches exist, significant challenges in developing multimodal systems remain that are hindering clinical adoption. In this paper, we introduce a multimodal framework, AutoPrognosis-M, that enables the integration of structured clinical (tabular) data and medical imaging using automated machine learning. AutoPrognosis-M incorporates 17 imaging models, including convolutional neural networks and vision transformers, and three distinct multimodal fusion strategies. In an illustrative application using a multimodal skin lesion dataset, we highlight the importance of multimodal machine learning and the power of combining multiple fusion strategies using ensemble learning. We have open-sourced our framework as a tool for the community and hope it will accelerate the uptake of multimodal machine learning in healthcare and spur further innovation.
Beschreibung:Veröffentlicht: 15. Januar 2025
Gesehen am 27.10.2025
Beschreibung:Online Resource
ISSN:2168-2208
DOI:10.1109/JBHI.2025.3530156