A software pipeline for medical information extraction with large language models, open source and suitable for oncology

In medical oncology, text data, such as clinical letters or procedure reports, is stored in an unstructured way, making quantitative analysis difficult. Manual review or structured information retrieval is time-consuming and costly, whereas Large Language Models (LLMs) offer new possibilities in nat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wiest, Isabella (VerfasserIn) , Wolf, Fabian (VerfasserIn) , Leßmann, Marie-Elisabeth (VerfasserIn) , van Treeck, Marko (VerfasserIn) , Ferber, Dyke (VerfasserIn) , Zhu, Jiefu (VerfasserIn) , Boehme, Heiko (VerfasserIn) , Bressem, Keno K. (VerfasserIn) , Ulrich, Hannes (VerfasserIn) , Ebert, Matthias (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 September 2025
In: npj precision oncology
Year: 2025, Jahrgang: 9, Heft: 1, Pages: 1-12
ISSN:2397-768X
DOI:10.1038/s41698-025-01103-4
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41698-025-01103-4
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41698-025-01103-4
Volltext
Verfasserangaben:Isabella Catharina Wiest, Fabian Wolf, Marie-Elisabeth Leßmann, Marko van Treeck, Dyke Ferber, Jiefu Zhu, Heiko Boehme, Keno K. Bressem, Hannes Ulrich, Matthias P. Ebert & Jakob Nikolas Kather
Beschreibung
Zusammenfassung:In medical oncology, text data, such as clinical letters or procedure reports, is stored in an unstructured way, making quantitative analysis difficult. Manual review or structured information retrieval is time-consuming and costly, whereas Large Language Models (LLMs) offer new possibilities in natural language processing for structured Information Extraction (IE) from medical free text. This protocol describes a workflow (LLM-AIx) for extracting predefined clinical entities from unstructured oncology text using privacy-preserving LLMs. It addresses a key barrier in clinical research and care by enabling efficient information extraction to support decision-making and large-scale data analysis. It runs on local hospital infrastructure, eliminating the need to transfer patient data externally. We demonstrate its utility on 100 pathology reports from The Cancer Genome Atlas (TCGA) for TNM stage extraction. LLM-AIx requires no programming skills and offers a user-friendly interface for rapid, structured data extraction from clinical free text.
Beschreibung:Gesehen am 29.10.2025
Beschreibung:Online Resource
ISSN:2397-768X
DOI:10.1038/s41698-025-01103-4