Performance of AI approaches for COVID-19 diagnosis using chest CT scans: the impact of architecture and dataset = Leistungsfähigkeit von KI-Methoden zur COVID-19-Diagnose mittels Thorax-CT: Der Einfluss von KI-Architektur und Datensätzen

AI is emerging as a promising tool for diagnosing COVID-19 based on chest CT scans. The aim of this study was the comparison of AI models for COVID-19 diagnosis. Therefore, we: (1) trained three distinct AI models for classifying COVID-19 and non-COVID-19 pneumonia (nCP) using a large, clinically re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jaiswal, Astha (VerfasserIn) , Fervers, Philipp (VerfasserIn) , Meng, Fanyang (VerfasserIn) , Zhang, Huimao (VerfasserIn) , Móré, Dorottya (VerfasserIn) , Giannakis, Athanasios (VerfasserIn) , Wailzer, Jasmin (VerfasserIn) , Bucher, Andreas Michael (VerfasserIn) , Maintz, David (VerfasserIn) , Kottlors, Jonathan (VerfasserIn) , Shahzad, Rahil (VerfasserIn) , Persigehl, Thorsten (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29. April 2025
In: RöFo
Year: 2025, Pages: [1-14]
ISSN:1438-9010
DOI:10.1055/a-2577-3928
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1055/a-2577-3928
Verlag, kostenfrei, Volltext: http://www.thieme-connect.de/DOI/DOI?10.1055/a-2577-3928
Volltext
Verfasserangaben:Astha Jaiswal, Philipp Fervers, Fanyang Meng, Huimao Zhang, Dorottya Móré, Athanasios Giannakis, Jasmin Wailzer, Andreas Michael Bucher, David Maintz, Jonathan Kottlors, Rahil Shahzad, Thorsten Persigehl

MARC

LEADER 00000naa a22000002c 4500
001 1940056411
003 DE-627
005 20251103113618.0
007 cr uuu---uuuuu
008 251103s2025 xx |||||o 00| ||eng c
024 7 |a 10.1055/a-2577-3928  |2 doi 
035 |a (DE-627)1940056411 
035 |a (DE-599)KXP1940056411 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Jaiswal, Astha  |e VerfasserIn  |0 (DE-588)1113020458  |0 (DE-627)867024933  |0 (DE-576)476817447  |4 aut 
245 1 0 |a Performance of AI approaches for COVID-19 diagnosis using chest CT scans  |b the impact of architecture and dataset = Leistungsfähigkeit von KI-Methoden zur COVID-19-Diagnose mittels Thorax-CT: Der Einfluss von KI-Architektur und Datensätzen  |c Astha Jaiswal, Philipp Fervers, Fanyang Meng, Huimao Zhang, Dorottya Móré, Athanasios Giannakis, Jasmin Wailzer, Andreas Michael Bucher, David Maintz, Jonathan Kottlors, Rahil Shahzad, Thorsten Persigehl 
246 3 1 |a Leistungsfähigkeit von KI-Methoden zur COVID-19-Diagnose mittels Thorax-CT: Der Einfluss von KI-Architektur und Datensätzen 
264 1 |c 29. April 2025 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.11.2025 
520 |a AI is emerging as a promising tool for diagnosing COVID-19 based on chest CT scans. The aim of this study was the comparison of AI models for COVID-19 diagnosis. Therefore, we: (1) trained three distinct AI models for classifying COVID-19 and non-COVID-19 pneumonia (nCP) using a large, clinically relevant CT dataset, (2) evaluated the models’ performance using an independent test set, and (3) compared the models both algorithmically and experimentally. In this multicenter multi-vendor study, we collected n=1591 chest CT scans of COVID-19 (n=762) and nCP (n=829) patients from China and Germany. In Germany, the data was collected from three RACOON sites. We trained and validated three COVID-19 AI models with different architectures: COVNet based on 2D-CNN, DeCoVnet based on 3D-CNN, and AD3D-MIL based on 3D-CNN with attention module. 991 CT scans were used for training the AI models using 5-fold cross-validation. 600 CT scans from 6 different centers were used for independent testing. The models’ performance was evaluated using accuracy (Acc), sensitivity (Se), and specificity (Sp). The average validation accuracy of the COVNet, DeCoVnet, and AD3D-MIL models over the 5 folds was 80.9%, 82.0%, and 84.3%, respectively. On the independent test set with n=600 CT scans, COVNet yielded Acc=76.6%, Se=67.8%, Sp=85.7%; DeCoVnet provided Acc=75.1%, Se=61.2%, Sp=89.7%; and AD3D-MIL achieved Acc=73.9%, Se=57.7%, Sp=90.8%. The classification performance of the evaluated AI models is highly dependent on the training data rather than the architecture itself. Our results demonstrate a high specificity and moderate sensitivity. The AI classification models should not be used unsupervised but could potentially assist radiologists in COVID-19 and nCP identification. 
700 1 |a Fervers, Philipp  |e VerfasserIn  |4 aut 
700 1 |a Meng, Fanyang  |e VerfasserIn  |4 aut 
700 1 |a Zhang, Huimao  |e VerfasserIn  |4 aut 
700 1 |a Móré, Dorottya  |d 1991-  |e VerfasserIn  |0 (DE-588)1247638219  |0 (DE-627)1782202951  |4 aut 
700 1 |a Giannakis, Athanasios  |e VerfasserIn  |0 (DE-588)1227892640  |0 (DE-627)1749093278  |4 aut 
700 1 |a Wailzer, Jasmin  |e VerfasserIn  |4 aut 
700 1 |a Bucher, Andreas Michael  |e VerfasserIn  |4 aut 
700 1 |a Maintz, David  |e VerfasserIn  |4 aut 
700 1 |a Kottlors, Jonathan  |e VerfasserIn  |4 aut 
700 1 |a Shahzad, Rahil  |e VerfasserIn  |4 aut 
700 1 |a Persigehl, Thorsten  |d 1974-  |e VerfasserIn  |0 (DE-588)124998011  |0 (DE-627)369634780  |0 (DE-576)294611355  |4 aut 
773 0 8 |i Enthalten in  |t RöFo  |d Stuttgart [u.a.] : Thieme, 1975  |g (2025), Seite [1-14]  |h Online-Ressource  |w (DE-627)324825021  |w (DE-600)2031079-1  |w (DE-576)107736748  |x 1438-9010  |7 nnas  |a Performance of AI approaches for COVID-19 diagnosis using chest CT scans the impact of architecture and dataset = Leistungsfähigkeit von KI-Methoden zur COVID-19-Diagnose mittels Thorax-CT: Der Einfluss von KI-Architektur und Datensätzen 
773 1 8 |g year:2025  |g pages:[1-14]  |g extent:14  |a Performance of AI approaches for COVID-19 diagnosis using chest CT scans the impact of architecture and dataset = Leistungsfähigkeit von KI-Methoden zur COVID-19-Diagnose mittels Thorax-CT: Der Einfluss von KI-Architektur und Datensätzen 
856 4 0 |u https://doi.org/10.1055/a-2577-3928  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://www.thieme-connect.de/DOI/DOI?10.1055/a-2577-3928  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251103 
993 |a Article 
994 |a 2025 
998 |g 1227892640  |a Giannakis, Athanasios  |m 1227892640:Giannakis, Athanasios  |d 50000  |e 50000PG1227892640  |k 0/50000/  |p 6 
999 |a KXP-PPN1940056411  |e 4795724261 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"title_sort":"RöFo","title":"RöFo","subtitle":"Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren"}],"language":["ger"],"recId":"324825021","disp":"Performance of AI approaches for COVID-19 diagnosis using chest CT scans the impact of architecture and dataset = Leistungsfähigkeit von KI-Methoden zur COVID-19-Diagnose mittels Thorax-CT: Der Einfluss von KI-Architektur und DatensätzenRöFo","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 20.03.2023"],"part":{"extent":"14","text":"(2025), Seite [1-14]","pages":"[1-14]","year":"2025"},"titleAlt":[{"title":"RöFo vereinigt mit Aktuelle Radiologie"},{"title":"Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin"},{"title":"Fortschritte auf dem Gebiete der Röntgenstrahlen und der neuen bildgebenden Verfahren"}],"pubHistory":["122.1975 -"],"id":{"issn":["1438-9010"],"eki":["324825021"],"doi":["10.1055/s-00000066"],"zdb":["2031079-1"]},"origin":[{"publisherPlace":"Stuttgart [u.a.]","publisher":"Thieme","dateIssuedKey":"1975","dateIssuedDisp":"1975-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"noteIll":"Illustrationen","extent":"14 S."}],"id":{"eki":["1940056411"],"doi":["10.1055/a-2577-3928"]},"origin":[{"dateIssuedDisp":"29. April 2025","dateIssuedKey":"2025"}],"name":{"displayForm":["Astha Jaiswal, Philipp Fervers, Fanyang Meng, Huimao Zhang, Dorottya Móré, Athanasios Giannakis, Jasmin Wailzer, Andreas Michael Bucher, David Maintz, Jonathan Kottlors, Rahil Shahzad, Thorsten Persigehl"]},"titleTranslated":[{"translated":"Leistungsfähigkeit von KI-Methoden zur COVID-19-Diagnose mittels Thorax-CT: Der Einfluss von KI-Architektur und Datensätzen"}],"language":["eng"],"recId":"1940056411","note":["Gesehen am 03.11.2025"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Performance of AI approaches for COVID-19 diagnosis using chest CT scans","subtitle":"the impact of architecture and dataset = Leistungsfähigkeit von KI-Methoden zur COVID-19-Diagnose mittels Thorax-CT: Der Einfluss von KI-Architektur und Datensätzen","title_sort":"Performance of AI approaches for COVID-19 diagnosis using chest CT scans"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Jaiswal, Astha","given":"Astha","family":"Jaiswal"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Fervers, Philipp","given":"Philipp","family":"Fervers"},{"family":"Meng","given":"Fanyang","roleDisplay":"VerfasserIn","display":"Meng, Fanyang","role":"aut"},{"role":"aut","display":"Zhang, Huimao","roleDisplay":"VerfasserIn","given":"Huimao","family":"Zhang"},{"display":"Móré, Dorottya","roleDisplay":"VerfasserIn","role":"aut","family":"Móré","given":"Dorottya"},{"roleDisplay":"VerfasserIn","display":"Giannakis, Athanasios","role":"aut","family":"Giannakis","given":"Athanasios"},{"family":"Wailzer","given":"Jasmin","roleDisplay":"VerfasserIn","display":"Wailzer, Jasmin","role":"aut"},{"given":"Andreas Michael","family":"Bucher","role":"aut","roleDisplay":"VerfasserIn","display":"Bucher, Andreas Michael"},{"display":"Maintz, David","roleDisplay":"VerfasserIn","role":"aut","family":"Maintz","given":"David"},{"role":"aut","display":"Kottlors, Jonathan","roleDisplay":"VerfasserIn","given":"Jonathan","family":"Kottlors"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Shahzad, Rahil","given":"Rahil","family":"Shahzad"},{"family":"Persigehl","given":"Thorsten","roleDisplay":"VerfasserIn","display":"Persigehl, Thorsten","role":"aut"}]} 
SRT |a JAISWALASTPERFORMANC2920