Deep learning can predict cardiovascular events from liver imaging

Background & Aims - Cardiovascular mortality remains the leading cause of death and a significant source of morbidity, with metabolic alterations being key etiological factors. As the main metabolic organ, the liver could predict prodromal changes associated with increased cardiovascular risk. H...

Full description

Saved in:
Bibliographic Details
Main Authors: Veldhuizen, Gregory Patrick (Author) , Lenz, Tim (Author) , Cifci, Didem (Author) , van Treeck, Marko (Author) , Clusmann, Jan (Author) , Chen, Yazhou (Author) , Schneider, Carolin V. (Author) , Luedde, Tom (Author) , de Leeuw, Peter W. (Author) , El-Armouche, Ali (Author) , Truhn, Daniel (Author) , Kather, Jakob Nikolas (Author)
Format: Article (Journal)
Language:English
Published: August 2025
In: JHEP reports
Year: 2025, Volume: 7, Issue: 8, Pages: 1-13
ISSN:2589-5559
DOI:10.1016/j.jhepr.2025.101427
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.jhepr.2025.101427
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S2589555925001041
Get full text
Author Notes:Gregory Patrick Veldhuizen, Tim Lenz, Didem Cifci, Marko van Treeck, Jan Clusmann, Yazhou Chen, Carolin V. Schneider, Tom Luedde, Peter W. de Leeuw, Ali El-Armouche, Daniel Truhn, Jakob Nikolas Kather

MARC

LEADER 00000naa a2200000 c 4500
001 1942083394
003 DE-627
005 20251124100709.0
007 cr uuu---uuuuu
008 251124s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jhepr.2025.101427  |2 doi 
035 |a (DE-627)1942083394 
035 |a (DE-599)KXP1942083394 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Veldhuizen, Gregory Patrick  |e VerfasserIn  |0 (DE-588)1321720475  |0 (DE-627)1881603628  |4 aut 
245 1 0 |a Deep learning can predict cardiovascular events from liver imaging  |c Gregory Patrick Veldhuizen, Tim Lenz, Didem Cifci, Marko van Treeck, Jan Clusmann, Yazhou Chen, Carolin V. Schneider, Tom Luedde, Peter W. de Leeuw, Ali El-Armouche, Daniel Truhn, Jakob Nikolas Kather 
264 1 |c August 2025 
300 |b Illustrationen, Diagramme 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar 22 April 2025, Version des Artikels 7 July 2025 
500 |a Gesehen am 24.11.2025 
520 |a Background & Aims - Cardiovascular mortality remains the leading cause of death and a significant source of morbidity, with metabolic alterations being key etiological factors. As the main metabolic organ, the liver could predict prodromal changes associated with increased cardiovascular risk. However, quantifying this risk remains challenging. This study explores the use of transformer neural networks on liver magnetic resonance imaging (MRI) data to enhance cardiovascular risk prediction. - Methods - Using the extensive collection of liver MRIs in the UK Biobank, we developed a feature extractor with a vision transformer backbone trained in a self-supervised manner. This encoder was then used to predict cardiovascular outcomes from liver MRI scans. Unlike traditional methods, no manual feature selection was required, minimizing bias. Performance was assessed via fivefold cross validation, where predicted risk scores were compared against actual cardiovascular outcomes. - Results - The model was trained on 44,672 liver MRIs. In the fivefold cross-validation predicting major adverse cardiac events, the mean AUC was 0.70 with a 95% CI of 0.69-0.72 and p <0.001. The F-statistic from the one-way ANOVA comparing the Systematic Coronary Risk Evaluation 2 (SCORE2) values of the three prediction model score groups was 68.49 with p <0.001. The log-rank test comparing the survival of those with prediction model scores above and below 0.5 had a test statistic of 43 and p <0.001. The multivariate log-rank test comparing the survival of those in the four quartiles of prediction model scores had a test statistic of 61 and p <0.001. - Conclusions - Vision transformer-based models demonstrate promise as quantifiable biomarkers for cardiovascular risk assessment by capturing subtle metabolic and vascular information from liver MRI scans. These findings highlight their strong predictive performance and potential value in risk stratification. Further prospective studies and external validation will be required to establish their clinical utility. - Impact and implications - Our study demonstrates that deep learning applied to liver MRI can predict cardiovascular risk, highlighting the role of the liver as a metabolic indicator of early cardiovascular disease. These findings are significant for clinicians and researchers seeking non-invasive, imaging-based biomarkers for cardiovascular risk stratification, particularly in patients who might not yet exhibit overt symptoms. If validated in prospective studies, this approach could enhance current risk assessment models, allowing for earlier and more personalized interventions in high-risk individuals. However, further validation is necessary before clinical implementation, ensuring broad applicability and integration into existing prevention frameworks. 
650 4 |a Biomarker development 
650 4 |a Cardiovascular risk 
650 4 |a Deep learning 
650 4 |a Liver MRI 
650 4 |a Major adverse cardiac events (MACE) 
650 4 |a Risk stratification 
650 4 |a Self-supervised learning (SSL) 
650 4 |a Survival analysis 
650 4 |a UK Biobank 
650 4 |a Vision transformer (ViT) 
700 1 |a Lenz, Tim  |e VerfasserIn  |4 aut 
700 1 |a Cifci, Didem  |e VerfasserIn  |4 aut 
700 1 |a van Treeck, Marko  |e VerfasserIn  |4 aut 
700 1 |a Clusmann, Jan  |e VerfasserIn  |4 aut 
700 1 |a Chen, Yazhou  |e VerfasserIn  |4 aut 
700 1 |a Schneider, Carolin V.  |e VerfasserIn  |4 aut 
700 1 |a Luedde, Tom  |e VerfasserIn  |4 aut 
700 1 |a de Leeuw, Peter W.  |e VerfasserIn  |4 aut 
700 1 |a El-Armouche, Ali  |e VerfasserIn  |4 aut 
700 1 |a Truhn, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t JHEP reports  |d Amsterdam : Elsevier, 2019  |g 7(2025), 8 vom: Aug., Artikel-ID 101427, Seite 1-13  |h Online-Ressource  |w (DE-627)166592800X  |w (DE-600)2972660-8  |x 2589-5559  |7 nnas  |a Deep learning can predict cardiovascular events from liver imaging 
773 1 8 |g volume:7  |g year:2025  |g number:8  |g month:08  |g elocationid:101427  |g pages:1-13  |g extent:13  |a Deep learning can predict cardiovascular events from liver imaging 
856 4 0 |u https://doi.org/10.1016/j.jhepr.2025.101427  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589555925001041  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251124 
993 |a Article 
994 |a 2025 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 12  |y j 
999 |a KXP-PPN1942083394  |e 4811859626 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1942083394","physDesc":[{"extent":"13 S.","noteIll":"Illustrationen, Diagramme"}],"title":[{"title_sort":"Deep learning can predict cardiovascular events from liver imaging","title":"Deep learning can predict cardiovascular events from liver imaging"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Online verfügbar 22 April 2025, Version des Artikels 7 July 2025","Gesehen am 24.11.2025"],"origin":[{"dateIssuedDisp":"August 2025","dateIssuedKey":"2025"}],"relHost":[{"name":{"displayForm":["EASL, European Association for the Study of the Liver"]},"origin":[{"dateIssuedDisp":"[2019]-","publisherPlace":"Amsterdam","publisher":"Elsevier"}],"pubHistory":["Volume 1, issue (JMay 2019)-"],"id":{"eki":["166592800X"],"issn":["2589-5559"],"zdb":["2972660-8"]},"part":{"volume":"7","year":"2025","text":"7(2025), 8 vom: Aug., Artikel-ID 101427, Seite 1-13","extent":"13","issue":"8","pages":"1-13"},"title":[{"title_sort":"JHEP reports","title":"JHEP reports"}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"166592800X","physDesc":[{"extent":"Online-Ressource"}],"disp":"Deep learning can predict cardiovascular events from liver imagingJHEP reports"}],"person":[{"family":"Veldhuizen","given":"Gregory Patrick","role":"aut","display":"Veldhuizen, Gregory Patrick"},{"display":"Lenz, Tim","family":"Lenz","given":"Tim","role":"aut"},{"display":"Cifci, Didem","family":"Cifci","given":"Didem","role":"aut"},{"role":"aut","given":"Marko","family":"van Treeck","display":"van Treeck, Marko"},{"display":"Clusmann, Jan","given":"Jan","role":"aut","family":"Clusmann"},{"family":"Chen","role":"aut","given":"Yazhou","display":"Chen, Yazhou"},{"family":"Schneider","given":"Carolin V.","role":"aut","display":"Schneider, Carolin V."},{"display":"Luedde, Tom","family":"Luedde","role":"aut","given":"Tom"},{"role":"aut","given":"Peter W.","family":"de Leeuw","display":"de Leeuw, Peter W."},{"display":"El-Armouche, Ali","given":"Ali","role":"aut","family":"El-Armouche"},{"display":"Truhn, Daniel","family":"Truhn","given":"Daniel","role":"aut"},{"given":"Jakob Nikolas","role":"aut","family":"Kather","display":"Kather, Jakob Nikolas"}],"id":{"doi":["10.1016/j.jhepr.2025.101427"],"eki":["1942083394"]},"name":{"displayForm":["Gregory Patrick Veldhuizen, Tim Lenz, Didem Cifci, Marko van Treeck, Jan Clusmann, Yazhou Chen, Carolin V. Schneider, Tom Luedde, Peter W. de Leeuw, Ali El-Armouche, Daniel Truhn, Jakob Nikolas Kather"]}} 
SRT |a VELDHUIZENDEEPLEARNI2025