Supernovae evidence for foundational change to cosmological models
We present a new, cosmologically model-independent, statistical analysis of the Pantheon+ Type Ia Supernovae spectroscopic data set, improving a standard methodology adopted by Lane et al. We use the Tripp equation for supernova standardization alone, thereby avoiding any potential correlation in th...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article (Journal) Editorial |
| Language: | English |
| Published: |
February 2025
|
| In: |
Monthly notices of the Royal Astronomical Society. Letters
Year: 2025, Volume: 537, Issue: 1, Pages: L55-L60 |
| ISSN: | 1745-3933 |
| DOI: | 10.1093/mnrasl/slae112 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.1093/mnrasl/slae112 |
| Author Notes: | Antonia Seifert, Zachary G. Lane, Marco Galoppo, Ryan Ridden-Harper and David L. Wiltshire |
| Summary: | We present a new, cosmologically model-independent, statistical analysis of the Pantheon+ Type Ia Supernovae spectroscopic data set, improving a standard methodology adopted by Lane et al. We use the Tripp equation for supernova standardization alone, thereby avoiding any potential correlation in the stretch and colour distributions. We compare the standard homogeneous cosmological model, i.e. spatially flat Lambda cold dark matter (LambdaCDM), and the timescape cosmology which invokes backreaction of inhomogeneities. Timescape, while statistically homogeneous and isotropic, departs from average Friedmann-Lemaître-Robertson-Walker evolution, and replaces dark energy by kinetic gravitational energy and its gradients, in explaining independent cosmological observations. When considering the entire Pantheon+ sample, we find very strong evidence (ln B > 5) in favour of timescape over LambdaCDM. Furthermore, even restricting the sample to redshifts beyond any conventional scale of statistical homogeneity, z > 0.075, timescape is preferred over $\Lambda$CDM with ln B > 1. These results provide evidence for a need to revisit the foundations of theoretical and observational cosmology. |
|---|---|
| Item Description: | Veröffentlicht: 19. Dezember 2024 Gesehen am 03.12.2025 |
| Physical Description: | Online Resource |
| ISSN: | 1745-3933 |
| DOI: | 10.1093/mnrasl/slae112 |