Pair cross-correlation analysis for assessing protein co-localization

Measuring co-localization of different types of molecules is essential to understand molecular organization in biological systems. The pair cross-correlation (PCC) function computed from two-color microscopy images provides a measure of co-localization between differently labeled molecules. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Patra, Pintu (VerfasserIn) , Sanchez, Cecilia P. (VerfasserIn) , Lanzer, Michael (VerfasserIn) , Schwarz, Ulrich S. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 October 2025
In: Biophysical journal
Year: 2025, Jahrgang: 124, Heft: 20, Pages: 3396-3407
ISSN:1542-0086
DOI:10.1016/j.bpj.2025.03.002
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.bpj.2025.03.002
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0006349525001389
Volltext
Verfasserangaben:Pintu Patra, Cecilia P. Sanchez, Michael Lanzer, and Ulrich S. Schwarz
Beschreibung
Zusammenfassung:Measuring co-localization of different types of molecules is essential to understand molecular organization in biological systems. The pair cross-correlation (PCC) function computed from two-color microscopy images provides a measure of co-localization between differently labeled molecules. Here, we compute a theoretical expression for the PCC function between two molecules using two-dimensional Gaussian distributions as the effective point-spread functions for single molecules. Through our analytical calculations, we provide a quantitative description of PCC in the case of multiple signal pairs. By fitting our analytical solutions to simulated images, we can estimate both small and large separation distances. We then apply this method to malaria-infected red blood cells (RBCs) imaged by stimulated emission depletion (STED) microscopy. We cross-correlate the signal for the knob-associated histidine-rich protein, which the parasite uses to remodel the spectrin-actin network of RBCs, with different signals from the RBCs and find that its average separation from the ankyrin junctions increases from 40 nm to 120 nm during the 48 h of the infectious cycle.
Beschreibung:Online verfügbar: 12. März 2025, Artikelversion: 21. Oktober 2025
Gesehen am 03.12.2025
Beschreibung:Online Resource
ISSN:1542-0086
DOI:10.1016/j.bpj.2025.03.002