A Lorentz-equivariant transformer for all of the LHC

We show that the Lorentz-Equivariant Geometric Algebra Transformer (L-GATr) yields state-of-the-art performance for a wide range of machine learning tasks at the Large Hadron Collider. L-GATr represents data in a geometric algebra over space-time and is equivariant under Lorentz transformations. The...

Full description

Saved in:
Bibliographic Details
Main Authors: Brehmer, Johann (Author) , Bresó Pla, Víctor (Author) , de Haan, Pim (Author) , Plehn, Tilman (Author) , Qu, Huilin (Author) , Spinner, Jonas (Author) , Thaler, Jesse (Author)
Format: Article (Journal)
Language:English
Published: 23 October 2025
In: SciPost physics
Year: 2025, Volume: 19, Issue: 4, Pages: 1-30
ISSN:2542-4653
DOI:10.21468/SciPostPhys.19.4.108
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.19.4.108
Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.19.4.108
Get full text
Author Notes:Johann Brehmer, Victor Bresó, Pim de Haan, Tilman Plehn, Huilin Qu, Jonas Spinner and Jesse Thaler
Description
Summary:We show that the Lorentz-Equivariant Geometric Algebra Transformer (L-GATr) yields state-of-the-art performance for a wide range of machine learning tasks at the Large Hadron Collider. L-GATr represents data in a geometric algebra over space-time and is equivariant under Lorentz transformations. The underlying architecture is a versatile and scalable transformer, which is able to break symmetries if needed. We demonstrate the power of L-GATr for amplitude regression and jet classification, and then benchmark it as the first Lorentz-equivariant generative network. For all three LHC tasks, we find significant improvements over previous architectures.
Item Description:Veröffentlicht: 23. Oktober 2025
Gesehen am 04.12.2025
Physical Description:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.19.4.108