A roadmap for next-generation nanomotors
Since their discovery in 2004, there has been remarkable progress in research on nanomotors, from the elucidation of different propulsion mechanisms to the study of their collective behaviour, culminating in investigations into their applications in biomedicine and environmental remediation. This Pe...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
01 August 2025
|
| In: |
Nature nanotechnology
Year: 2025, Volume: 20, Issue: 8, Pages: 990-1000 |
| ISSN: | 1748-3395 |
| DOI: | 10.1038/s41565-025-01962-9 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41565-025-01962-9 Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41565-025-01962-9 |
| Author Notes: | Shuqin Chen, Donglei Emma Fan, Peer Fischer, Ambarish Ghosh, Kerstin Göpfrich, Ramin Golestanian, Henry Hess, Xing Ma, Bradley J. Nelson, Tania Patiño Padial, Jinyao Tang, Katherine Villa, Wei Wang, Li Zhang, Ayusman Sen, and Samuel Sánchez |
| Summary: | Since their discovery in 2004, there has been remarkable progress in research on nanomotors, from the elucidation of different propulsion mechanisms to the study of their collective behaviour, culminating in investigations into their applications in biomedicine and environmental remediation. This Perspective reviews this evolution in nanomotor research and discusses the key challenges ahead, including the need for developing advanced characterization techniques, precise motion control, materials innovation, theory and modelling, and translationally feasible in vivo biomedical applications. These challenges highlight the current limitations of synthetic nanomotors and point to exciting future opportunities to revolutionize theranostics and create ‘living’ hybrid systems. We introduce the concept of ‘systems materials’ to encompass interacting functional materials across length scales from molecular to macro. Thus, this Perspective aims to inspire future generations of researchers to advance both fundamental understanding and practical breakthroughs, thereby engineering a paradigm shift in nanomotor research. |
|---|---|
| Item Description: | Gesehen am 17.12.2025 |
| Physical Description: | Online Resource |
| ISSN: | 1748-3395 |
| DOI: | 10.1038/s41565-025-01962-9 |