Bi-contact structures with symmetry: local normal forms

A pair of transverse contact distributions on a 3-manifold will in general admit no 1-parameter families of symmetries: a flow preserving both contact distributions. Here, we will determine local normal forms for such pairs admitting symmetries. In particular, we observe that orientable Anosov flows...

Full description

Saved in:
Bibliographic Details
Main Author: Jackman, Connor (Author)
Format: Article (Journal)
Language:English
Published: December 2025
In: Journal of fixed point theory and applications
Year: 2025, Volume: 27, Issue: 4, Pages: 1-26
ISSN:1661-7746
DOI:10.1007/s11784-025-01235-x
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s11784-025-01235-x
Get full text
Author Notes:Connor Jackman
Description
Summary:A pair of transverse contact distributions on a 3-manifold will in general admit no 1-parameter families of symmetries: a flow preserving both contact distributions. Here, we will determine local normal forms for such pairs admitting symmetries. In particular, we observe that orientable Anosov flows may be globally given by the intersection of a pair of oppositely oriented contact distributions admitting, around any point, maximal local symmetries.
Item Description:Online veröffentlicht: 10. Oktober 2025
Gesehen am 22.01.2026
Physical Description:Online Resource
ISSN:1661-7746
DOI:10.1007/s11784-025-01235-x