Critical scaling for spectral functions

We study real-time scalar φ4 -theory in 2+1 dimensions near criticality. Specifically, we compute the single-particle spectral function and that of the s-channel four-point function in and outside the scaling regime. The computation is done with the spectral functional Callan–Symanzik equation, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kockler, Konrad (VerfasserIn) , Pawlowski, Jan M. (VerfasserIn) , Wessely, Jonas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 06 September 2025
In: The European physical journal. C, Particles and fields
Year: 2025, Jahrgang: 85, Heft: 9, Pages: 1-18
ISSN:1434-6052
DOI:10.1140/epjc/s10052-025-14679-9
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1140/epjc/s10052-025-14679-9
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1140/epjc/s10052-025-14679-9
Volltext
Verfasserangaben:Konrad Kockler, Jan M. Pawlowski, Jonas Wessely
Beschreibung
Zusammenfassung:We study real-time scalar φ4 -theory in 2+1 dimensions near criticality. Specifically, we compute the single-particle spectral function and that of the s-channel four-point function in and outside the scaling regime. The computation is done with the spectral functional Callan–Symanzik equation, which exhibits manifest Lorentz invariance and preserves causality. We extract the scaling exponent η from the spectral function and compare our result with that from a Euclidean fixed point analysis.
Beschreibung:Gesehen am 23.01.2026
Beschreibung:Online Resource
ISSN:1434-6052
DOI:10.1140/epjc/s10052-025-14679-9