Critical scaling for spectral functions
We study real-time scalar φ4 -theory in 2+1 dimensions near criticality. Specifically, we compute the single-particle spectral function and that of the s-channel four-point function in and outside the scaling regime. The computation is done with the spectral functional Callan–Symanzik equation, whic...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
06 September 2025
|
| In: |
The European physical journal. C, Particles and fields
Year: 2025, Jahrgang: 85, Heft: 9, Pages: 1-18 |
| ISSN: | 1434-6052 |
| DOI: | 10.1140/epjc/s10052-025-14679-9 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1140/epjc/s10052-025-14679-9 Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1140/epjc/s10052-025-14679-9 |
| Verfasserangaben: | Konrad Kockler, Jan M. Pawlowski, Jonas Wessely |
| Zusammenfassung: | We study real-time scalar φ4 -theory in 2+1 dimensions near criticality. Specifically, we compute the single-particle spectral function and that of the s-channel four-point function in and outside the scaling regime. The computation is done with the spectral functional Callan–Symanzik equation, which exhibits manifest Lorentz invariance and preserves causality. We extract the scaling exponent η from the spectral function and compare our result with that from a Euclidean fixed point analysis. |
|---|---|
| Beschreibung: | Gesehen am 23.01.2026 |
| Beschreibung: | Online Resource |
| ISSN: | 1434-6052 |
| DOI: | 10.1140/epjc/s10052-025-14679-9 |