Learning latent jet structure

We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Alloca...

Full description

Saved in:
Bibliographic Details
Main Authors: Dillon, Barry M. (Author) , Faroughy, Darius A. (Author) , Kamenik, Jernej F. (Author) , Szewc, Manuel (Author)
Format: Article (Journal)
Language:English
Published: 29 June 2021
In: Symmetry
Year: 2021, Volume: 13, Issue: 7, Pages: 1-11
ISSN:2073-8994
DOI:10.3390/sym13071167
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/sym13071167
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2073-8994/13/7/1167
Get full text
Author Notes:Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik and Manuel Szewc
Description
Summary:We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted tt¯ jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.
Item Description:Gesehen am 14.10.2021
Physical Description:Online Resource
ISSN:2073-8994
DOI:10.3390/sym13071167