Learning latent jet structure

We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Alloca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dillon, Barry M. (VerfasserIn) , Faroughy, Darius A. (VerfasserIn) , Kamenik, Jernej F. (VerfasserIn) , Szewc, Manuel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 June 2021
In: Symmetry
Year: 2021, Jahrgang: 13, Heft: 7, Pages: 1-11
ISSN:2073-8994
DOI:10.3390/sym13071167
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/sym13071167
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2073-8994/13/7/1167
Volltext
Verfasserangaben:Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik and Manuel Szewc
Beschreibung
Zusammenfassung:We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted tt¯ jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.
Beschreibung:Gesehen am 14.10.2021
Beschreibung:Online Resource
ISSN:2073-8994
DOI:10.3390/sym13071167