Full-length spatial transcriptomics reveals the unexplored isoform diversity of the myocardium post-MI

We introduce Single-cell Nanopore Spatial Transcriptomics (scNaST), a software suite to facilitate the analysis of spatial gene expression from second- and third-generation sequencing, allowing to generate a full-length near-single-cell transcriptional landscape of the tissue microenvironment. Takin...

Full description

Saved in:
Bibliographic Details
Main Authors: Boileau, Etienne (Author) , Li, Xue (Author) , Naarmann-de Vries, Isabel S. (Author) , Becker, Christian (Author) , Casper, Ramona (Author) , Altmüller, Janine (Author) , Leuschner, Florian (Author) , Dieterich, Christoph (Author)
Format: Article (Journal)
Language:English
Published: 22 July 2022
In: Frontiers in genetics
Year: 2022, Volume: 13, Pages: 1-11
ISSN:1664-8021
DOI:10.3389/fgene.2022.912572
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.3389/fgene.2022.912572
Verlag, kostenfrei, Volltext: https://www.frontiersin.org/articles/10.3389/fgene.2022.912572
Get full text
Author Notes:Etienne Boileau, Xue Li, Isabel S Naarmann-de Vries, Christian Becker, Ramona Casper, Janine Altmüller, Florian Leuschner and Christoph Dieterich
Description
Summary:We introduce Single-cell Nanopore Spatial Transcriptomics (scNaST), a software suite to facilitate the analysis of spatial gene expression from second- and third-generation sequencing, allowing to generate a full-length near-single-cell transcriptional landscape of the tissue microenvironment. Taking advantage of the Visium Spatial platform, we adapted a strategy recently developed to assign barcodes to long-read single-cell sequencing data for spatial capture technology. Here, we demonstrate our workflow using four short axis sections of the mouse heart following myocardial infarction. We constructed a de novo transcriptome using long-read data, and successfully assigned 19,794 transcript isoforms in total, including clinically-relevant, but yet uncharacterized modes of transcription, such as intron retention or antisense overlapping transcription. We showed a higher transcriptome complexity in the healthy regions, and identified intron retention as a mode of transcription associated with the infarct area. Our data revealed a clear regional isoform switching among differentially used transcripts for genes involved in cardiac muscle contraction and tissue morphogenesis. Molecular signatures involved in cardiac remodeling integrated with morphological context may support the development of new therapeutics towards the treatment of heart failure and the reduction of cardiac complications.
Item Description:Gesehen am 22.09.2022
Physical Description:Online Resource
ISSN:1664-8021
DOI:10.3389/fgene.2022.912572