Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology: a retrospective multicentric study

Aim - Gastric cancer (GC) is a tumour entity with highly variant outcomes. Lymph node metastasis is a prognostically adverse biomarker. We hypothesised that GC primary tissue contains information that is predictive of lymph node status and patient prognosis and that this information can be extracted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Muti, Hannah Sophie (VerfasserIn) , Röcken, Christoph (VerfasserIn) , Behrens, Hans-Michael (VerfasserIn) , Löffler, Chiara M. L. (VerfasserIn) , Reitsam, Nic G. (VerfasserIn) , Grosser, Bianca (VerfasserIn) , Märkl, Bruno (VerfasserIn) , Stange, Daniel E. (VerfasserIn) , Jiang, Xiaofeng (VerfasserIn) , Veldhuizen, Gregory P. (VerfasserIn) , Truhn, Daniel (VerfasserIn) , Ebert, Matthias (VerfasserIn) , Grabsch, Heike I. (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: November 2023
In: European journal of cancer
Year: 2023, Jahrgang: 194, Pages: 1-12
ISSN:1879-0852
DOI:10.1016/j.ejca.2023.113335
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2023.113335
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0959804923006378
Volltext
Verfasserangaben:Hannah S. Muti, Christoph Röcken, Hans-Michael Behrens, Chiara M.L. Löffler, Nic G. Reitsam, Bianca Grosser, Bruno Märkl, Daniel E. Stange, Xiaofeng Jiang, Gregory P. Veldhuizen, Daniel Truhn, Matthias P. Ebert, Heike I. Grabsch, Jakob N. Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1879629623
003 DE-627
005 20250116004018.0
007 cr uuu---uuuuu
008 240131s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2023.113335  |2 doi 
035 |a (DE-627)1879629623 
035 |a (DE-599)KXP1879629623 
035 |a (OCoLC)1425207053 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Muti, Hannah Sophie  |e VerfasserIn  |0 (DE-588)1246552256  |0 (DE-627)1779610890  |4 aut 
245 1 0 |a Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology  |b a retrospective multicentric study  |c Hannah S. Muti, Christoph Röcken, Hans-Michael Behrens, Chiara M.L. Löffler, Nic G. Reitsam, Bianca Grosser, Bruno Märkl, Daniel E. Stange, Xiaofeng Jiang, Gregory P. Veldhuizen, Daniel Truhn, Matthias P. Ebert, Heike I. Grabsch, Jakob N. Kather 
264 1 |c November 2023 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 31.01.2024 
500 |a Online verfügbar 12 September 2023, Version des Artikels 18 October 2023 
520 |a Aim - Gastric cancer (GC) is a tumour entity with highly variant outcomes. Lymph node metastasis is a prognostically adverse biomarker. We hypothesised that GC primary tissue contains information that is predictive of lymph node status and patient prognosis and that this information can be extracted using deep learning (DL). - Methods - Using three patient cohorts comprising 1146 patients, we trained and validated a DL system to predict lymph node status directly from haematoxylin and eosin-stained GC tissue sections. We investigated the concordance between the DL-based prediction from the primary tumour slides (aiN score) and the histopathological lymph node status (pN). Furthermore, we assessed the prognostic value of the aiN score alone and when combined with the pN status. - Results - The aiN score predicted the pN status reaching area under the receiver operating characteristic curves of 0.71 in the training cohort and 0.69 and 0.65 in the two test cohorts. In a multivariate Cox analysis, the aiN score was an independent predictor of patient survival with hazard ratios of 1.5 in the training cohort and of 1.3 and 2.2 in the two test cohorts. A combination of the aiN score and the pN status prognostically stratified patients by survival with p-values <0.05 in logrank tests. - Conclusion - GC primary tumour tissue contains additional prognostic information that is accessible using the aiN score. In combination with the pN status, this can be used for personalised management of GC patients after prospective validation. 
650 4 |a Artificial intelligence 
650 4 |a Deep learning 
650 4 |a Digital pathology 
650 4 |a Gastric cancer 
650 4 |a Precision oncology 
700 1 |a Röcken, Christoph  |e VerfasserIn  |4 aut 
700 1 |a Behrens, Hans-Michael  |e VerfasserIn  |4 aut 
700 1 |a Löffler, Chiara M. L.  |e VerfasserIn  |4 aut 
700 1 |a Reitsam, Nic G.  |e VerfasserIn  |4 aut 
700 1 |a Grosser, Bianca  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Märkl, Bruno  |d 1966-  |e VerfasserIn  |0 (DE-588)1185438998  |0 (DE-627)166463486X  |4 aut 
700 1 |a Stange, Daniel E.  |e VerfasserIn  |4 aut 
700 1 |a Jiang, Xiaofeng  |e VerfasserIn  |4 aut 
700 1 |a Veldhuizen, Gregory P.  |e VerfasserIn  |4 aut 
700 1 |a Truhn, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Ebert, Matthias  |d 1968-  |e VerfasserIn  |0 (DE-588)1030133522  |0 (DE-627)734827083  |0 (DE-576)377938432  |4 aut 
700 1 |a Grabsch, Heike I.  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 194(2023) vom: Nov., Artikel-ID 113335, Seite 1-12  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology a retrospective multicentric study 
773 1 8 |g volume:194  |g year:2023  |g month:11  |g elocationid:113335  |g pages:1-12  |g extent:12  |a Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology a retrospective multicentric study 
856 4 0 |u https://doi.org/10.1016/j.ejca.2023.113335  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0959804923006378  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20240131 
993 |a Article 
994 |a 2023 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 14  |y j 
998 |g 1030133522  |a Ebert, Matthias  |m 1030133522:Ebert, Matthias  |d 60000  |d 61100  |e 60000PE1030133522  |e 61100PE1030133522  |k 0/60000/  |k 1/60000/61100/  |p 12 
999 |a KXP-PPN1879629623  |e 4472616726 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1016/j.ejca.2023.113335"],"eki":["1879629623"]},"name":{"displayForm":["Hannah S. Muti, Christoph Röcken, Hans-Michael Behrens, Chiara M.L. Löffler, Nic G. Reitsam, Bianca Grosser, Bruno Märkl, Daniel E. Stange, Xiaofeng Jiang, Gregory P. Veldhuizen, Daniel Truhn, Matthias P. Ebert, Heike I. Grabsch, Jakob N. Kather"]},"physDesc":[{"extent":"12 S.","noteIll":"Illustrationen"}],"recId":"1879629623","note":["Gesehen am 31.01.2024","Online verfügbar 12 September 2023, Version des Artikels 18 October 2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"title":[{"subtitle":"a retrospective multicentric study","title_sort":"Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology","title":"Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology"}],"person":[{"family":"Muti","given":"Hannah Sophie","role":"aut","display":"Muti, Hannah Sophie"},{"family":"Röcken","given":"Christoph","role":"aut","display":"Röcken, Christoph"},{"display":"Behrens, Hans-Michael","role":"aut","given":"Hans-Michael","family":"Behrens"},{"display":"Löffler, Chiara M. L.","family":"Löffler","given":"Chiara M. L.","role":"aut"},{"display":"Reitsam, Nic G.","role":"aut","given":"Nic G.","family":"Reitsam"},{"display":"Grosser, Bianca","family":"Grosser","given":"Bianca","role":"aut"},{"family":"Märkl","role":"aut","given":"Bruno","display":"Märkl, Bruno"},{"family":"Stange","role":"aut","given":"Daniel E.","display":"Stange, Daniel E."},{"family":"Jiang","role":"aut","given":"Xiaofeng","display":"Jiang, Xiaofeng"},{"display":"Veldhuizen, Gregory P.","role":"aut","given":"Gregory P.","family":"Veldhuizen"},{"display":"Truhn, Daniel","family":"Truhn","role":"aut","given":"Daniel"},{"family":"Ebert","given":"Matthias","role":"aut","display":"Ebert, Matthias"},{"display":"Grabsch, Heike I.","family":"Grabsch","role":"aut","given":"Heike I."},{"display":"Kather, Jakob Nikolas","family":"Kather","role":"aut","given":"Jakob Nikolas"}],"relHost":[{"titleAlt":[{"title":"EJC online"}],"pubHistory":["28.1992 -"],"corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"display":"European Association for Cancer Research","role":"isb"},{"role":"isb","display":"European School of Oncology"}],"part":{"text":"194(2023) vom: Nov., Artikel-ID 113335, Seite 1-12","volume":"194","extent":"12","pages":"1-12","year":"2023"},"id":{"eki":["266883400"],"issn":["1879-0852"],"zdb":["1468190-0"]},"origin":[{"publisher":"Elsevier ; Pergamon Press","dateIssuedDisp":"1992-","dateIssuedKey":"1992","publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]"}],"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"266883400","disp":"Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology a retrospective multicentric studyEuropean journal of cancer"}],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"November 2023"}]} 
SRT |a MUTIHANNAHDEEPLEARNI2023