Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology: a retrospective multicentric study
Aim - Gastric cancer (GC) is a tumour entity with highly variant outcomes. Lymph node metastasis is a prognostically adverse biomarker. We hypothesised that GC primary tissue contains information that is predictive of lymph node status and patient prognosis and that this information can be extracted...
Gespeichert in:
| Hauptverfasser: | , , , , , , , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
November 2023
|
| In: |
European journal of cancer
Year: 2023, Jahrgang: 194, Pages: 1-12 |
| ISSN: | 1879-0852 |
| DOI: | 10.1016/j.ejca.2023.113335 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2023.113335 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0959804923006378 |
| Verfasserangaben: | Hannah S. Muti, Christoph Röcken, Hans-Michael Behrens, Chiara M.L. Löffler, Nic G. Reitsam, Bianca Grosser, Bruno Märkl, Daniel E. Stange, Xiaofeng Jiang, Gregory P. Veldhuizen, Daniel Truhn, Matthias P. Ebert, Heike I. Grabsch, Jakob N. Kather |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1879629623 | ||
| 003 | DE-627 | ||
| 005 | 20250116004018.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240131s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.ejca.2023.113335 |2 doi | |
| 035 | |a (DE-627)1879629623 | ||
| 035 | |a (DE-599)KXP1879629623 | ||
| 035 | |a (OCoLC)1425207053 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Muti, Hannah Sophie |e VerfasserIn |0 (DE-588)1246552256 |0 (DE-627)1779610890 |4 aut | |
| 245 | 1 | 0 | |a Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology |b a retrospective multicentric study |c Hannah S. Muti, Christoph Röcken, Hans-Michael Behrens, Chiara M.L. Löffler, Nic G. Reitsam, Bianca Grosser, Bruno Märkl, Daniel E. Stange, Xiaofeng Jiang, Gregory P. Veldhuizen, Daniel Truhn, Matthias P. Ebert, Heike I. Grabsch, Jakob N. Kather |
| 264 | 1 | |c November 2023 | |
| 300 | |b Illustrationen | ||
| 300 | |a 12 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 31.01.2024 | ||
| 500 | |a Online verfügbar 12 September 2023, Version des Artikels 18 October 2023 | ||
| 520 | |a Aim - Gastric cancer (GC) is a tumour entity with highly variant outcomes. Lymph node metastasis is a prognostically adverse biomarker. We hypothesised that GC primary tissue contains information that is predictive of lymph node status and patient prognosis and that this information can be extracted using deep learning (DL). - Methods - Using three patient cohorts comprising 1146 patients, we trained and validated a DL system to predict lymph node status directly from haematoxylin and eosin-stained GC tissue sections. We investigated the concordance between the DL-based prediction from the primary tumour slides (aiN score) and the histopathological lymph node status (pN). Furthermore, we assessed the prognostic value of the aiN score alone and when combined with the pN status. - Results - The aiN score predicted the pN status reaching area under the receiver operating characteristic curves of 0.71 in the training cohort and 0.69 and 0.65 in the two test cohorts. In a multivariate Cox analysis, the aiN score was an independent predictor of patient survival with hazard ratios of 1.5 in the training cohort and of 1.3 and 2.2 in the two test cohorts. A combination of the aiN score and the pN status prognostically stratified patients by survival with p-values <0.05 in logrank tests. - Conclusion - GC primary tumour tissue contains additional prognostic information that is accessible using the aiN score. In combination with the pN status, this can be used for personalised management of GC patients after prospective validation. | ||
| 650 | 4 | |a Artificial intelligence | |
| 650 | 4 | |a Deep learning | |
| 650 | 4 | |a Digital pathology | |
| 650 | 4 | |a Gastric cancer | |
| 650 | 4 | |a Precision oncology | |
| 700 | 1 | |a Röcken, Christoph |e VerfasserIn |4 aut | |
| 700 | 1 | |a Behrens, Hans-Michael |e VerfasserIn |4 aut | |
| 700 | 1 | |a Löffler, Chiara M. L. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Reitsam, Nic G. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Grosser, Bianca |e VerfasserIn |4 aut | |
| 700 | 1 | |8 1\p |a Märkl, Bruno |d 1966- |e VerfasserIn |0 (DE-588)1185438998 |0 (DE-627)166463486X |4 aut | |
| 700 | 1 | |a Stange, Daniel E. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Jiang, Xiaofeng |e VerfasserIn |4 aut | |
| 700 | 1 | |a Veldhuizen, Gregory P. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Truhn, Daniel |e VerfasserIn |4 aut | |
| 700 | 1 | |a Ebert, Matthias |d 1968- |e VerfasserIn |0 (DE-588)1030133522 |0 (DE-627)734827083 |0 (DE-576)377938432 |4 aut | |
| 700 | 1 | |a Grabsch, Heike I. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Kather, Jakob Nikolas |d 1989- |e VerfasserIn |0 (DE-588)1064064914 |0 (DE-627)812897587 |0 (DE-576)423589091 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t European journal of cancer |d Amsterdam [u.a.] : Elsevier, 1992 |g 194(2023) vom: Nov., Artikel-ID 113335, Seite 1-12 |w (DE-627)266883400 |w (DE-600)1468190-0 |w (DE-576)090954173 |x 1879-0852 |7 nnas |a Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology a retrospective multicentric study |
| 773 | 1 | 8 | |g volume:194 |g year:2023 |g month:11 |g elocationid:113335 |g pages:1-12 |g extent:12 |a Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology a retrospective multicentric study |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.ejca.2023.113335 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0959804923006378 |x Verlag |z lizenzpflichtig |3 Volltext |
| 883 | |8 1\p |a cgwrk |d 20241001 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
| 951 | |a AR | ||
| 992 | |a 20240131 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1064064914 |a Kather, Jakob Nikolas |m 1064064914:Kather, Jakob Nikolas |d 910000 |d 910100 |e 910000PK1064064914 |e 910100PK1064064914 |k 0/910000/ |k 1/910000/910100/ |p 14 |y j | ||
| 998 | |g 1030133522 |a Ebert, Matthias |m 1030133522:Ebert, Matthias |d 60000 |d 61100 |e 60000PE1030133522 |e 61100PE1030133522 |k 0/60000/ |k 1/60000/61100/ |p 12 | ||
| 999 | |a KXP-PPN1879629623 |e 4472616726 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"doi":["10.1016/j.ejca.2023.113335"],"eki":["1879629623"]},"name":{"displayForm":["Hannah S. Muti, Christoph Röcken, Hans-Michael Behrens, Chiara M.L. Löffler, Nic G. Reitsam, Bianca Grosser, Bruno Märkl, Daniel E. Stange, Xiaofeng Jiang, Gregory P. Veldhuizen, Daniel Truhn, Matthias P. Ebert, Heike I. Grabsch, Jakob N. Kather"]},"physDesc":[{"extent":"12 S.","noteIll":"Illustrationen"}],"recId":"1879629623","note":["Gesehen am 31.01.2024","Online verfügbar 12 September 2023, Version des Artikels 18 October 2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"title":[{"subtitle":"a retrospective multicentric study","title_sort":"Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology","title":"Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology"}],"person":[{"family":"Muti","given":"Hannah Sophie","role":"aut","display":"Muti, Hannah Sophie"},{"family":"Röcken","given":"Christoph","role":"aut","display":"Röcken, Christoph"},{"display":"Behrens, Hans-Michael","role":"aut","given":"Hans-Michael","family":"Behrens"},{"display":"Löffler, Chiara M. L.","family":"Löffler","given":"Chiara M. L.","role":"aut"},{"display":"Reitsam, Nic G.","role":"aut","given":"Nic G.","family":"Reitsam"},{"display":"Grosser, Bianca","family":"Grosser","given":"Bianca","role":"aut"},{"family":"Märkl","role":"aut","given":"Bruno","display":"Märkl, Bruno"},{"family":"Stange","role":"aut","given":"Daniel E.","display":"Stange, Daniel E."},{"family":"Jiang","role":"aut","given":"Xiaofeng","display":"Jiang, Xiaofeng"},{"display":"Veldhuizen, Gregory P.","role":"aut","given":"Gregory P.","family":"Veldhuizen"},{"display":"Truhn, Daniel","family":"Truhn","role":"aut","given":"Daniel"},{"family":"Ebert","given":"Matthias","role":"aut","display":"Ebert, Matthias"},{"display":"Grabsch, Heike I.","family":"Grabsch","role":"aut","given":"Heike I."},{"display":"Kather, Jakob Nikolas","family":"Kather","role":"aut","given":"Jakob Nikolas"}],"relHost":[{"titleAlt":[{"title":"EJC online"}],"pubHistory":["28.1992 -"],"corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"display":"European Association for Cancer Research","role":"isb"},{"role":"isb","display":"European School of Oncology"}],"part":{"text":"194(2023) vom: Nov., Artikel-ID 113335, Seite 1-12","volume":"194","extent":"12","pages":"1-12","year":"2023"},"id":{"eki":["266883400"],"issn":["1879-0852"],"zdb":["1468190-0"]},"origin":[{"publisher":"Elsevier ; Pergamon Press","dateIssuedDisp":"1992-","dateIssuedKey":"1992","publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]"}],"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"266883400","disp":"Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology a retrospective multicentric studyEuropean journal of cancer"}],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"November 2023"}]} | ||
| SRT | |a MUTIHANNAHDEEPLEARNI2023 | ||