A self-supervised vision transformer to predict survival from histopathology in renal cell carcinoma: original article
To develop and validate an interpretable deep learning model to predict overall and disease-specific survival (OS/DSS) in clear cell renal cell carcinoma (ccRCC).
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
August 2023
|
| In: |
World journal of urology
Year: 2023, Volume: 41, Issue: 8, Pages: 2233-2241 |
| ISSN: | 1433-8726 |
| DOI: | 10.1007/s00345-023-04489-7 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00345-023-04489-7 Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00345-023-04489-7 |
| Author Notes: | Frederik Wessels, Max Schmitt, Eva Krieghoff-Henning, Malin Nientiedt, Frank Waldbillig, Manuel Neuberger, Maximilian C. Kriegmair, Karl-Friedrich Kowalewski, Thomas S. Worst, Matthias Steeg, Zoran V. Popovic, Timo Gaiser, Christof von Kalle, Jochen S. Utikal, Stefan Fröhling, Maurice S. Michel, Philipp Nuhn, Titus J. Brinker |
| Summary: | To develop and validate an interpretable deep learning model to predict overall and disease-specific survival (OS/DSS) in clear cell renal cell carcinoma (ccRCC). |
|---|---|
| Item Description: | Online veröffentlicht: 29. Juni 2023 Gesehen am 08.04.2024 |
| Physical Description: | Online Resource |
| ISSN: | 1433-8726 |
| DOI: | 10.1007/s00345-023-04489-7 |